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THE USE OF DEEP LEARNING FOR MILITARY VEHICLE 

IDENTIFICATION IN SAR IMAGERY 
 

Summary. Artificial intelligence approaches, especially those involving deep 

learning, have recently become integral to object detection, as they can 

autonomously identify relevant features in visual datasets. The identification of 

military equipment, including mechanized vehicles, is crucial for threat detection 

and minimizing the impact of enemy actions by enabling countermeasures to be 

taken as quickly as possible after the threat is detected. The application of deep 

learning, particularly convolutional neural networks (CNN), is a highly effective 

tool for image processing and pattern recognition in visual data. These networks 

utilize convolutional layers to automatically extract features from images, making 

them ideal for analyzing synthetic aperture radar (SAR) imagery. Active sensor 

technologies like SAR are essential for object recognition due to their capability to 

operate in all weather conditions, both day and night. 
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1. INTRODUCTION 

 

The growing adoption of artificial intelligence in numerous fields is closely linked to the 

rapid development of deep learning methods. These algorithms, which rely on deep neural 

network architectures, are capable of autonomously extracting features and classifying data. As 

a result, they have become essential tools in image analysis, including tasks such as object 

detection, image classification, and semantic segmentation [1]. Synthetic Aperture Radar 

(SAR) is an important active sensor for microwave imaging, whose ability to operate around 

the clock and in all weather conditions makes it a crucial tool in the remote sensing community 

[2]. Since the launch of the first SAR satellite by the United States, this technology has gained 

widespread recognition and application in fields such as geological exploration, topographic 

mapping, disaster forecasting, and traffic monitoring. Deep learning-based approaches to SAR 

data analysis contribute to notable advancements in the automation of object detection and 

classification. Convolutional neural networks can learn both low- and high-level features from 

raw images, making them ideal for remote sensing tasks. The use of this technology in object 

detection on SAR imagery opens up new perspectives in terms of the accuracy and efficiency 

of recognition processes [3]. 

In the publication by Majumder, Blasch, and Garren [4], the focus is on analyzing modern 

deep learning approaches for Automatic Target Recognition (ATR) on SAR images. The book 

explores how various neural networks perform when tested on the MSTAR (Moving and 

Stationary Target Acquisition and Recognition) dataset, which was originally developed by 

DARPA (Defense Advanced Research Projects Agency) and the Air Force Research 

Laboratory to support target recognition research. This dataset contains 20,000 SAR image 

fragments depicting 10 types of military objects, including those from the former Soviet Union 

[5]. Although the MSTAR dataset is commonly used to evaluate traditional machine learning 

algorithms, such as SVM, achieving high classification accuracy (97% - 100%), there are 

studies indicating decreased performance of algorithms when tested on other datasets, such as 

QinetiQ [6].  

In addition, this work surveys current ATR techniques, with particular emphasis on neural 

networks utilizing SAR datasets like MSTAR and TerraSAR-X as input. 

Among the proposed approaches is the all-convolutional network (A-ConvNet) proposed by 

Chen et al., which features high computational efficiency through the use of sparsely connected 

convolutions and the omission of the fully connected (FC) layer [7]. Additionally, Furukawa et 

al. proposed the VersNet network, which allows for processing SAR images of various sizes 

and composed of multiple objects of different classes [8]. Shang et al., introduced the M-Net 

model, which utilizes a memory module to predict labels of unknown samples based on the 

spatial similarity information of features [9]. 

In the domain of SAR image sequence processing, Zhang et al. proposed the MA-BLSTM 

framework, which leverages Gabor filters and TPLBP operators for extracting both global and 

local information, while utilizing Long Short-Term Memory (LSTM) networks for the purpose 

of reducing the dimensionality of extracted features [10]. Bai et al. on the other hand, proposed 

an LSTM network that achieved high performance in the presence of noise, indicating its 

potential in complex operational environments [11]. 

Nevertheless, when SAR meets deep learning, it is necessary to carefully consider how to 

utilize this advanced technology optimally. Deep learning abandons traditional, hand-crafted 

features in favor of abstract features extracted by neural networks [12]. It is essential to 

understand whether the abstract features extracted by neural networks can fully represent real 
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SAR data, and whether traditional features, based on mature theories and techniques, should be 

completely abandoned. 

The article presents a novel concept of applying deep learning for object identification in 

SAR radar imagery, analyzing both the benefits and challenges of integrating these 

technologies. The focus is on the selection of network architecture and its properties, known as 

hyperparameters. Potential development directions and research in this rapidly evolving field 

are also discussed, considering the unique properties of SAR data and the need for their efficient 

utilization in combination with deep learning. In summary, research on deep learning in the 

context of ATR in SAR imagery is progressing dynamically, though it faces challenges related 

to adaptation to different environmental conditions and practical operational applications.  

 

 

2. NEURAL NETWORK ARCHITECTURE 

  

Deep neural networks are complex, hierarchical structures composed of multiple nonlinear 

layers with local connections between them [13]. These layers act as automatic, unsupervised 

feature extractors. The extracted features are then passed to the final part of the network, which 

typically consists of one or two layers of a classical neural network with fully connected 

connections between layers. 

Deep neural networks are distinguished by their unified structure, serving both as feature 

extractor/selector and as the final classifier or regression system. This relieves the user from the 

need to define and select the most important diagnostic features of the analyzed process. Deep 

neural networks excel in image and pattern recognition tasks due to their ability to learn 

hierarchical features at different levels of abstraction. These abstraction levels indicate the 

progression from low-level, fine-grained features to high-level, more generalized 

representations extracted from the input data. As the signal passes through successive layers of 

the neural network, the  feature extractors in these layers learn increasingly complex and 

abstract representations of the data [14]. 

 

2.1. Database  

  

In this research, model training and evaluation were conducted using the MSTAR dataset, 

which includes 20,000 SAR image patches of various military vehicles and targets. Among 

them are the D7 bulldozer, BTR60 and BRDM2 armored personnel carriers, ZSU23-4 anti-

aircraft gun, 2S1 self-propelled howitzer, T62 tank, ZIL131 truck, and the standard calibration 

target SLICY. In total, the developed network will be capable of recognizing 8 different types 

of objects. The images were acquired at two different depression angles: 15° and 17°, with 

various orientations ranging from 190 to 300, providing comprehensive coverage of 

orientations across the entire 360° angle. Figure 1 shows sample SAR radar data, while Figure 2 

illustrates sample objects as seen by optical sensors like cameras and in SAR imagery.  

Among the most frequently utilized datasets for developing deep learning models in SAR 

target identification is the MSTAR database. It is valued for its richness and diversity of data, 

enabling researchers to train and test algorithms under realistic conditions. This database is 

crucial for developing techniques such as data augmentation, transfer learning, and assessing 

the impact of noise and interference on ATR algorithm effectiveness. In many studies using the 

MSTAR dataset, various neural network architectures have been compared, ranging from 

smaller networks like LeNet to more advanced ones such as ResNet18 and wide networks like 
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Wide-ResNet18 [15]. One of the main findings was that more complex and deeper network 

architectures do not always translate into higher effectiveness in SAR target recognition [16]. 

 

 
 

Fig. 1. Examples of SAR radar images of various objects from the MSTAR database 

 

 
 

Fig. 2. Objects imaged using optical and SAR sensors. 

2.2 CNN Network Structure 
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The article applied a CNN model, which has a deep, multi-layer structure. The name CNN 

stands for Convolutional Neural Network, derived from the convolution operation, which is 

a key computational process in these networks. The convolution of discrete signals can be 

represented mathematically as described by the formula in reference [17]:  

 

   𝒚(𝑛) = 𝒙(𝑛) ∗ 𝒘(𝑛) = ∑ 𝒙(𝑛 − 𝑖)𝒘∞
𝑖=−∞ (𝑖)            (1) 

 

In the presented equation, x(n) denotes the input signal, w(n) corresponds to the convolution 

kernel, and the resulting output y(n) forms the feature map. For one-dimensional neural signal 

processing, the data are represented as vectors, where x stands for the set of training signals, 

and w is a multi-dimensional weight matrix that adjusts during the learning process. When 

dealing with images, data are represented as a two-dimensional matrix I, with each element 

I(m, n) indicating the pixel intensity. 

The kernel K also takes the form of a two-dimensional matrix. The convolution operation 

for two-dimensional matrices is defined by the formula [18]: 

 

     𝒀(𝑖, 𝑗) = 𝑰(𝑖, 𝑗) ∗ 𝑲(𝑖, 𝑗)             (2) 

 

     𝒀(𝑖, 𝑗) = ∑ ∑ 𝑰(𝑖 − 𝑚, 𝑗 − 𝑛)𝑲(𝑚, 𝑛)𝑛  𝑚            (3) 

 

Two-dimensional convolution involves sliding the kernel K over the image matrix I and 

computing the sum of element-wise products. The result of this operation is a new matrix that 

contains information about how well the kernel K fits different parts of the image I. Therefore, 

in Figures 3 and 4, the convolution operation for the image and the filter is depicted. 

 

 
 

Fig. 3. Example of convolution of a 5x5 image matrix with a 3x3 filter - matrix example 
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Fig. 4. Example of convolution of a 5x5 grayscale image matrix with a 3x3 filter 

 

This is a fundamental operation in convolutional neural networks (CNNs), used to detect 

various features in images such as edges, textures, and other patterns. The convolution operation 

applied in CNNs offers significant advantages compared to standard matrix operations in 

classical neural networks. These advantages include local connectivity, shared (reusable) filter 

weights, and translation invariance (equivariance). 

In neural networks, local connectivity leads to significant savings in the number of 

computational operations. Unlike full connectivity, where each neuron is connected to all input 

signals, local connections link neurons only to a small set of neighboring input signals (pixels) 

within the range of the convolutional kernel. This kernel typically has much smaller dimensions 

than the entire image. Such an approach not only reduces the number of required computational 

operations but also lowers the demand for system memory. Figure 4 illustrates the comparison 

between full and local weight connections of neurons with input signals. 

 

 
Fig. 5. Example of full (left-side diagram) and local connection of network neurons  

(right-side diagram) in the case of one-dimensional data 
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Parameter sharing refers to a technique where the same weights are applied across different 

locations in the input. Instead of creating unique sets of weights for each possible location of 

the filter mask, the same weights are reused for different shifts. This practice brings several key 

benefits. Firstly, it significantly reduces memory requirements since there is no need to store 

separate parameters for each location. This is particularly critical for large networks or limited 

hardware resources, where every bit of memory counts. Secondly, by sharing parameters, the 

network can more effectively leverage its learning capacity. Shared weights learn to represent 

similar features across different parts of the image or sequence, which can lead to better 

generalization and more efficient utilization of knowledge within the network. Additionally, 

parameter sharing reduces computational overhead because fewer parameters need updating 

during the learning process. This, in turn, speeds up the network training process and increases 

its operational efficiency. Overall, parameter sharing is a significant optimization strategy in 

neural network design aimed at improving performance and efficiently utilizing available 

computational and memory resources. 

Translation equivariance implies that applying a transformation to the input causes the 

output to transform in the same way. In mathematical terms, if function f(x) is equivariant to 

function g(x), then f(g(x)) = g(f(x)). For example, convolving an image shifted one pixel right, 

I’(x, y) = I(x-1, y), yields the same result as convolving the original image I(x, y) and 

subsequently shifting the output by one pixel. 

The model used in the article includes inter-area convolutional connections in the initial 

layers, enabling efficient feature extraction from the input data. The convolutional layer consists 

of three levels. The first level involves linear convolution, which is linear filtering using a 

moving kernel mask over the image. The output result is the sum of the linear filtering results 

of the previous layer's images, considering different weight values of individual masks. The 

next level is the linear activation function, such as ReLU, which operates on the summed output 

signal of the linear convolution. The last level involves statistical pooling, which reduces the 

image dimensionality by analyzing the results obtained from the moving filter mask of the 

neuron. Batch normalization was applied during training to accelerate learning and stabilize the 

network [19]. The model also included a pooling layer that helped reduce the dimensionality of 

data and improve translation invariance [20]. These features together make up the CNN 

architecture shown in Figure 6, which enables effective input classification. 

The convolutional neural network was designed and implemented in the MATLAB 

environment. To conduct the research, a Dell laptop equipped with a 13th Generation Intel® 

Core™ i5-1345U processor running at 1.60 GHz, 16 GB of RAM, and Windows 11 Pro was 

used. The software tools included MATLAB Version 23.2.0.2365128 (R2023b), developed by 

MathWorks, Inc., Natick, MA, USA. This hardware and software configuration provided 

a reliable platform for the development, training, and evaluation of the CNN model. 

After extensive preliminary experimentation, the final design of the network settled on 

a deep architecture composed of six convolutional layers. It begins with two layers, each 

containing 32 neurons and equipped with 3×3 filters that scan the input with a fine 1×1 stride. 

These layers are enhanced with batch normalization and the ReLU activation function, followed 

by 2×2 max pooling to efficiently reduce spatial dimensions while preserving crucial features. 

As the network progresses deeper, the third and fourth layers increase the complexity by 

doubling the neuron count to 64, while maintaining the proven filter size and stride. This pattern 

continues in the fifth and sixth layers, where 128 neurons work in tandem with the consistent 

filter and stride settings, batch normalization, and ReLU activations, capped off with max 

pooling to compact the learned representations. This carefully crafted progression enables 
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the network to extract increasingly abstract and high-level features, laying a strong foundation 

for accurate and robust classification. 

 

 
Fig. 6. The architecture of the proposed CNN 

 

The flatten layer then converts the input feature maps into a one-dimensional vector, 

allowing the data to be processed by the fully connected layers. This fully connected layer 

contains 8 neurons, representing the eight image categories, with the Softmax activation 

function applied at the output layer for classification purposes. 

The input layer in a convolutional neural network serves as the initial stage that receives the 

raw input data. It does not apply any convolutional or activation functions. Its primary function 

is to accept the incoming data and forward it unchanged to the next layers in the network, 

preserving the original shape and characteristics of the input. Essentially, it acts as the entry 

point for data processing within the neural network [21]. 

Batch normalization is a technique designed to mitigate the internal covariate shift 

phenomenon, where the distribution of inputs to neural network layers shifts during training, 

complicating the learning process. It operates by normalizing the inputs within each mini-batch: 

for every feature, it calculates the mean and standard deviation, then scales the data to have 

zero mean and unit variance [22]. This normalization ensures that despite ongoing updates to 

the model’s parameters, the input to each layer remains stable, which accelerates convergence 

and enhances overall training performance. 

After each convolutional layer in the model, a ReLU activation function is applied: 

 

      y = {
x,       dla x > 0
0,       dla x ≤ 0

             (4) 
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This is currently the most widely used activation function for training neural networks 

designed for image object recognition. A comparison of various activation functions commonly 

used in neural networks is presented in Figure 7. 

The ReLU activation function mitigates the vanishing gradient problem and makes the 

network more robust against improper initialization of parameters. Its operation involves 

eliminating negative values, which accelerates network training and enhances its ability to 

capture complex data dependencies. This stems from its infinite response to positive signals 

and zeroing out negative signals. This approach results in only a subset of neurons being active 

during training, which helps prevent overfitting and accelerates the learning process. Moreover, 

the ReLU activation function allows for simple computation of derivatives, and its piecewise 

linear nature facilitates efficient backpropagation for updating network weights.  

After normalization, the data is processed by a statistical filter called max pooling, which 

selects the maximum value within each filter window and reduces computational load in the 

following layers. By applying this operation to non-overlapping subregions, only the most 

prominent features are retained, significantly decreasing the volume of data passed on for 

further processing without sacrificing the algorithm’s performance. The straightforward 

mechanism of this 2×2 max pooling filter is illustrated in Figure 8. 

Before reaching the network's output, the information passes through the Softmax function. 

This function transforms the input vector into a normalized vector where values range from 0 

to 1. Consequently, the output layer produces values that can be understood as probabilities. 

This allows determining the network's accuracy percentage during its analysis. Figure 9 

illustrates an example of how this function operates. 

 

 

3. NETWORK LEARNING PROCESS 

 

The chapter presents the results of the study on the proposed convolutional neural network 

model regarding the tuning of network hyperparameters, particularly focusing on the learning 

rate of the network. A confusion matrix of the obtained results for military object detection  

is presented. The accuracy of the proposed method is also compared comprehensively  

with other available methods serving as classifiers for objects in the MSTAR database using 

CNN. 

 

3.1 Learning Rate 

 

Activation function, weight vector, as well as the number and type of neural network layers, 

learning rate, and a series of other model settings constitute what is referred to as 

hyperparameters, directly influencing the operation of neurons. Hyperparameter values are 

selected before each network training. The series of network trainings is referred to as the 

network learning process. Therefore, the learning process involves tuning the hyperparameters 

of the network model to achieve optimal performance in carrying out the intended task. 

The learning process of the designed neural network involves presenting successive training 

examples to the network input, generating responses, and updating hyperparameters so that with 

each iteration, the differences between the model's response and the expected response are 

minimized. Consequently, the goal is to achieve the intended effectiveness while making the 

network capable of generating correct responses for examples that were not used during 

training. 

 



260 A. Ślesicka, B. Ślesicki 

 

 
Fig. 7. Overview and Comparison of Activation Functions in Neural Architectures [23] 
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Fig. 8. Comparison of Max Pooling and Average Pooling 

 

 

 
 

Fig. 9. Operation of the Softmax function 

 

The learning rate must be carefully tuned because it has a critical impact on the training of 

machine learning models [17]. This parameter determines how large the maximum weight 

change of a neuron can be during an update. If this rate is too small, the learning process 

becomes very lengthy because the network requires many iterations to make significant 

corrections to neuron weights. Conversely, if the rate is too high, it can lead to excessively large 

weight corrections, preventing the network from properly fitting the training data (Figure 10).  

When weight corrections are too large, neuron computations may still exhibit random 

behavior even after many iterations of learning, making it difficult for the network to effectively 

adapt to input data patterns. When weights are adjusted in large steps, neuron computations 

may still exhibit random behavior even after numerous iterations. In such a situation, it is 

challenging to fit them into the overall network pattern, similar to the situation at the beginning 

of the learning process. 
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Fig. 10. Learning process with improperly chosen learning rate 

 

On the other hand, a properly chosen learning rate (Figure 11) allows the network to quickly 

achieve the required accuracy within a few epochs. An epoch denotes a single pass through all 

the training examples in the training dataset during the learning process. Beyond this point, 

further improvements in recognition accuracy are minimal. 

 

 
Fig. 11. Training process with an appropriately chosen learning rate 

 

Setting the learning rate too high (as shown in Fig. 12) can cause the training process to advance 

very quickly, but this rapid progress is not necessarily beneficial. When the learning rate is 

excessively large, the network may overshoot the optimal solution and become stuck in a local 

minimum, preventing it from achieving the highest possible recognition accuracy. This 

underscores the importance of carefully tuning the learning rate to balance speed and stability 

during training. 

 

3.2 Confusion Matrix 

 

Effective implementation of machine learning requires proper model evaluation, which can 

be done quantitatively or qualitatively. Qualitative evaluation of the model involves analyzing 

its behavior and generated outputs. Quantitative evaluation, on the other hand, is based on 

metrics that provide information about the correctness of the model's operation. One of the most 

popular metrics is accuracy. Accuracy measures how well the model correctly classifies 

examples in both binary and multi-class classification tasks. It ranges from zero (all examples 
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classified incorrectly) to one (all examples classified correctly). Insights derived from model 

evaluation can be used to assess the model's utility and applicability, improve the training 

process, identify challenging cases, and select the network structure and its hyperparameters. 

 

 
 

Fig. 12. Training process terminated with an error 

 

In predictive classifier studies, a particularly useful tool is the confusion matrix, which 

provides information about the number and types of errors made, distinguishing between type 

I and type II errors: 

• type I error (false positive, FP) involves rejecting the true null hypothesis, meaning the 

presence of an object despite its actual absence; 

• type II error (false negative, FN) occurs when the false null hypothesis is accepted, 

indicating that an object is considered absent even though it is actually present. 

 

The confusion matrix stores information about predictions in a table format, where rows i 

and columns j represent the true label and classifier's response, respectively. The value in each 

cell (i, j) indicates the count of observed class-prediction pairs. An example matrix for a binary 

problem is depicted in Figure 13. The matrix cells contain symbolic notations for TP (true 

positive), reflecting correctly classified samples, TN (true negative), indicating correctly 

rejected samples, and the errors of types I and II. For the discussed multiclass classification in 

the article, the matrix construction needs to be adjusted to an 8 x 8 size. In this case, redefining 

TP, FP, FN, and TN coefficients is required, computed separately for each class i = 1….8. 

The negative class is considered as the sum of all classes not analyzed, j = 1…8, where j ≠ i. 

Building on the neural network architecture outlined above, simulations were carried out to 

train a deep neural network capable of classifying eight distinct object categories. The study 

employed a dataset of 4,000 images, evenly distributed with 500 images per class. These images 

were randomly partitioned into three subsets: 70% allocated for training to optimize the 

network’s weights, 15% reserved for validation to fine-tune the model and prevent overfitting, 

and the final 15% set aside for testing to objectively evaluate the network’s classification 

performance after training. 

Figure 14 presents a confusion matrix that illustrates the performance of the proposed model 

across the target classes within the dataset. The matrix highlights correctly classified instances 

in blue, while misclassifications are shown in orange. Notably, the model exhibited difficulties 

distinguishing the 2S1 vehicle from the T62, ZIL 131, and ZSU 23 vehicles. The simulation 

results displayed represent the best outcomes achieved among numerous trials, which involved 
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extensive and time-consuming experimentation with various parameters, including the number 

of images per class, training epochs, and different hyperparameter settings. A comprehensive 

summary of all conducted simulations is provided in Table 3. 

 

 

 
 

Fig. 13. Definition of the confusion matrix 

 

 

 
 

Fig. 14. Simulation results in the form of a confusion matrix 
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Tab. 1 

Summary of all conducted simulations 

 

Simulation 1 

Number of images per class Accuracy 

100 71.08 % 

200 88.54 % 

500 94.22 % 

Simulation 2 

Initial learning rate Training time 

0.00001 2060 min 

0.0001 940 min 

0.001 250 min 

Simulation 3 

Initial learning rate Accuracy 

0.00001 66.08 % 

0.0001 85.54 % 

0.001 98.22 % 

 

Figure 15 presents a comparison of the accuracy between the proposed method and the 

convolutional neural network structure against other available methods for recognizing military 

objects from the MSTAR database depicted using SAR radar for the same dataset (8 classes 

with 500 images each). As observed, the method developed in this article exhibits the highest 

accuracy. 

 

 
 

Fig. 15. Comparison of ATR methods accuracies 
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4. DISCUSSION AND CONCLUSIONS 

 

This article proposes an innovative framework for employing deep learning techniques to 

identify objects within SAR radar imagery, thoroughly examining the associated benefits and 

challenges. Particular attention is given to the careful selection of the network architecture and 

its critical hyperparameters, which play a pivotal role in model performance. 

Deep neural networks and their underlying deep learning techniques have opened new 

horizons for advancing artificial intelligence. The innovative fusion of these technologies with 

radar systems enables practical applications in everyday life. By integrating both feature 

extraction and classification into a single framework, deep neural networks can process raw 

data directly, eliminating the need for manual expert intervention. 

The article explores potential avenues for development and research in this field, 

emphasizing the unique advantages of SAR radar – its capability to operate effectively in all 

weather conditions and during both day and night. These features provide engineers with 

significant opportunities to create advanced devices for military and civilian uses, including 

covert monitoring of designated areas. 

The convolutional neural network model developed in this study was implemented using 

MATLAB and rigorously evaluated on the MSTAR dataset, which encompasses eight different 

target categories. The experimental results indicate that the proposed method surpasses most 

state-of-the-art deep learning models in accurately recognizing objects within SAR imagery, 

highlighting its effectiveness and robustness. 

The authors plan to direct future research towards the practical implementation of their work, 

which includes acquiring the necessary SAR radar hardware and UAV platforms, conducting 

comprehensive field experiments, and systematically validating and enhancing the proposed 

convolutional neural network architecture. 

In conclusion, the field of deep learning for automatic target recognition (ATR) in SAR 

imagery is progressing swiftly, although it still faces significant challenges in adapting to 

varying environmental conditions and ensuring effective performance in practical operational 

scenarios. 
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