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TIME MINIMIZATION DELIVERY PLANNING WITH  

THE TIME-QUANTITY DEPENDENCE 
 

Summary. One of the classical problems in transportation planning is represented 

minimizing the maximal delivery time of a uniform commodity between sources 

and destinations, known as the Bottleneck Transportation Problem (BTP). It 

assumes that a fixed transportation time – independent of the quantity of the 

transported commodity – is assigned to each source-to-destination route. In some 

cases, however, the quantity of the transported commodity may affect the 

transportation time, e.g., because of the duration of loading/unloading the 

commodity to/from the vehicle. Extensions of the BTP as well as the closely related 

Total Time Minimization Transportation Problem (TTMTP) which include the 

linear time-quantity dependence of the delivery time are considered. Whereas 

similar optimization problems known in the literature are nonlinear, linear 

programming is used in this research. Linear optimization provides better 

performance of the optimization software in comparison with nonlinear 

optimization. The above fact is illustrated by improving solutions to the problems 

known in the literature. A detailed insight into the issue of the existence of integer 

optimal solutions and interpretations of optimal solutions is also provided. 
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1. INTRODUCTION AND LITERATURE REVIEW 

 

Transportation is one of the most important human activities, essential for businesses, public 

services, emergency aid, and military operations. The optimization of transportation operations 

has always been an interest of decision makers. However, the mathematical complexity of many 

real-world problems is often an obstacle in the efficient search for optimal solutions. The 

beginnings of the contemporary scientific approach to transportation optimization date back to 

the second quarter of the 20th century, when papers by Tolstoi [1], Kantorovich [2] and 

Hitchcock [3] were published. Especially the problem considered by Hitchcock, known as the 

Hitchcock Transportation Problem, the Standard Transportation problem (STP), the Cost 

Minimization Transportation Problem (CMTP) or just the Transportation Problem (TP) was a 

“starting point” in the modern optimization of transport operations. It can be briefly described 

as the allocation of a uniform commodity on the routes connecting sources with limited supplies 

to destinations with defined demands. The goal of the allocation is to minimize the total 

transportation (also referred to as shipping) cost while the demands are satisfied, and the limits 

of supplies are not exceeded. Moreover, the transportation cost on each route is the product of 

a fixed unit cost and the amount of the commodity and the total transportation cost is the sum 

of the costs on all routes, making the total transportation cost a multivariable linear function. In 

1951 Dantzig [4] expressed the STP as a linear programming problem and solved it using the 

simplex method. Because of a specific mathematical form of the STP which allows for the use 

of computational techniques not available for “general” linear programming problems, many 

various solving methods like the Stepping Stone Method [5], Vogel’s Approximation Method 

or VAM [6], Least Cost Method or LCM [7], modified Stepping Stone Method [8], Lowest 

Allocation Method or LAM [9], some modifications of Vogel’s Method [10-11] have been 

developed. 

Even though TP was itself a great achievement, it turned out as early as in 1950’s that reliable 

modeling the decisions related to the real-world transportation required more elaborate 

mathematics, which resulted in creating many extensions of STP (see e.g. [13]). In particular, 

minimization of the total cost (of the transportation itself only or increased by some other costs) 

was no longer a unique criterion of optimality used in extensions of STP.  

Among the optimality criteria other than the minimization cost, the time minimization is one 

of the most important ones. This criterion requires a more detailed description in the context of 

optimization of transportation activities because it has two different meanings under the same 

name. The first meaning is “to minimize the time in which the commodity is delivered to all 

the destinations, assuming that the transportation started simultaneously at all the sources”. This 

criterion is modeled under the names the Bottleneck/Time Minimizing Transportation Problem. 

Another meaning can be “to minimize the total time in which the transportation of the 

commodity is performed (the sum of the transportation times on all routes connecting sources 

and destinations)”. The latter criterion is modeled as the Total Time Minimizing Transportation 

Problem.  

The both meanings of “the time minimization” refer to two separate time-related optimality 

criteria that occur instead of the cost minimization criterion of STP (or some of its extensions) 

while the constraints regarding the flow of the commodity remain unchanged. The first criterion 

results from situations in which the time of completing the deliveries, not the cost, matters, like 

deliveries of emergency supplies to locations affected by disasters, ammunition to battlefields, 

perishable goods to customers, etc. The second one results from the necessity of minimizing 

the usage of scarce resources like the work time of drivers or plane/ship crews. To continue, an 

important assumption must be made. Namely, for both of the abovementioned criteria, it is 
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assumed that there is a fixed transportation time assigned to each source-destination pair, which 

does not depend on the quantity of the transported commodity. A motivation for such an 

assumption is that if a non-zero flow of the commodity is scheduled to a route, then the 

commodity on this route is transported in a single vehicle or in a “team” of vehicles traveling 

together (e.g., a single truck or a convoy of trucks). For simplicity reasons, in later 

considerations we assume that if a positive quantity of the commodity is transported, then a 

single vehicle is always used for transportation on any source-to-destination route (and such a 

route is then called “a used route”). When the time-optimization criteria are applied, the time 

of the transportation on any specific route is a discontinuous function of the quantity of the 

commodity, which equals zero for the argument equal to zero and equals a constant positive 

number for a positive argument. 

The difference between the two abovementioned criteria is the objective function. For the 

first one, it is the maximum of the transportation times over all the routes, whereas for the 

second one, it is the sum of the transportation times over all the routes. The first case is more 

represented in the literature, and it is known as the Bottleneck Transportation Problem (BTP) 

or the Time Minimizing Transportation Problem (TMTP). The second problem is known as the 

Total Time Minimizing Transportation Problem (TTMTP).  

The earliest time-optimal version of the problem known today as BTP or TMTP was 

formulated by Barsov in 1959 [15], who named it the Transportation Problem Time with a Time 

Criterion. Further developments in solving BTP are due to Nesterov [16], Grabowski [17,18] 

(as the Transportation Problems with Minimal Time), Szwarc [19,20] (as the Time 

Transportation Problem) and Hammer (as the Time Minimizing Transportation Problem) [21]. 

All those authors used modifications of the simplex method to solve the problem. Garfinkel and 

Rao in [22] used an approach based on the Hungarian method instead. Garfinkel and Rao were 

also the first ones to use the name “Bottleneck Transportation Problem”. More progress was 

achieved by Sharma and Swarup [23], Bhatia, Swarup and Puri [24], Seshan and Tikekar [25], 

Issermann [26]. Another approach to solving BTP is to consider it as a special case of so-called 

bottleneck linear programming [27]. 

BTP allowed to model decisions that were impossible to be handled by STP. BTP in its 

“pure” form, however, also turned out not to be sufficient for modeling some real-world 

decisions, and this is why many extensions of BTP have been created in response to the needs 

of decision-makers. Those extensions included the Capacitated Bottleneck Facility Location 

Problem [28], the Bottleneck Capacitated Transportation Problem with Bounds on Rim 

Conditions [29], the Time Minimizing Transportation Problem with Mixed Constraints [30]. 

The time optimization in transportation planning does not need to occur instead of the cost 

optimization as a unique criterion of optimality. They may “coexist”, being both – not 

necessarily equally – important to a decision maker. This is why some models that consider 

both optimality criteria have also been created. In [31] the Bottleneck-Cost Transportation 

Problem was introduced as a bi-criteria optimization problem in which the total cost and the 

delivery time are minimized simultaneously. In [32] two complementary bi-level programming 

models are considered in which either minimizing the maximal delivery time is the primary and 

minimizing the cost is the second-level optimality criterion or vice versa. In [33] the 

Constrained Bottleneck Transportation Problem (CBTP) was introduced, in which a budget 

constraint (the maximal total transportation cost) was added. 

Dropping the assumption of the lack of dependence of the transportation time on the actual 

quantity of the transported commodity, which is a main issue investigated in this paper, has also 

been considered but to a limited extent only. In [34] such a dependence was introduced as an 

increasing piecewise constant function. This dependence resulted from the necessity of 
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performing multiple trips for each source-destination pair due to insufficient capacities of the 

available vehicles. A version of BTP with the transportation time being proportional to the 

quantity of the delivered commodity instead of the fixed time was considered in [33]. The 

quantity-dependent and fixed components of the delivery time were joined together into one 

model in [35] and [36]. In those papers, the unloading time proportional to the amount of the 

delivered commodity, added to the fixed time was considered. In [36] the standard BTP model 

was extended by including both the loading and unloading time and also by considering using 

many vehicles per route because of the limited availability of vehicles. In this paper the concepts 

of the time-quantity dependence from [35], [36] and [36] are joined together and extended into 

one mathematical model (without multiple vehicle usage considered in [36], however). 

This paper is intended to present a comprehensive theoretical background and to provide an 

efficient computational method for the transportation problem with the time minimization and 

the time-quantity dependence. Whereas this paper is devoted mainly to an extension of BTP 

that includes the time-quantity dependence, an analogical extension of TTMTP is also 

considered. Particular goals of the paper are the following. 

The first goal is to formulate an extension of BTP to the case in which the minimal delivery 

time depends also on the quantity of the transported commodity, based on the research in the 

field. This extension concerns a wider range of practical applications of the model than those 

defined in [35] and [36], but without changing its mathematical form. A new name for the 

considered problem is also introduced to better conform to the existing naming conventions in 

the field. An analogical extension of TTMTP (based on [38]) is also introduced. 

The second and most important goal is to reformulate the proposed extension of BTP which 

is, like the “pure” BTP, a nonlinear optimization problem, to be a linear optimization problem. 

The reason for the reformulation is practical. Whereas the linear formulation of the considered 

problem is formally equivalent to the nonlinear one, the performance of optimization software 

may be poor in the case of nonlinear optimization, resulting in calculating worse, suboptimal 

solutions instead of optimal ones. This phenomenon occurred in [36]. Unfortunately, no 

efficient method of obtaining optimal solutions was presented or even suggested. In this paper 

it was shown that optimizing a linear version of the considered problem allows finding an 

optimal solution. An analogical linearization of the extension of TTMTP is also performed. 

The third goal is to discuss the existence of integer-valued optimal solutions of the 

considered optimization problems depending on the values of the parameters, as well as the 

necessity of imposing integer constraints on the variables. 

The paper has the following structure. Section 2 reviews BTP and TTMTP as formulated 

nonlinear programming problems and presents their extensions, which include a component of 

the delivery time depending on the quantity of the transported commodity. Those extensions, 

primarily nonlinear, are later reformulated as linear programming problems. The issues related 

to integer-valued optimal solutions are also discussed. In Section 3, two example problems, one 

from [35] and one from [36], are solved as linear programming problems to show the 

improvement in the quality of the solutions obtained thanks to using linear optimization instead 

of nonlinear. The results of other calculations related to the existence of integer optimal 

solutions. Section 5 contains a discussion on the considered models themselves as well as on 

the results of the performed calculations. In Section 6, final conclusions are presented.  
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2. DATA AND METHODS 

 

The main topic of this section is an extension of BTP with the quantity-time dependence and 

its linearization. An analogical extension and linearization will be performed on TTMTP. 

Let us introduce the necessary notation, common to BTP and TTMTP, and their extensions. 

A uniform commodity is to be delivered from 𝑚 sources to 𝑛 destinations. The transportation 

time for each “source-destination” pair is constant and does not depend on the amount of the 

commodity. However, if no commodity is transported, then the transportation time is obviously 

equal to zero. Each “source-destination” pair is called a route from source 𝑖 to destination 𝑗. 

The following parameters are given: 

• 𝑎𝑖 – maximal possible supply from source 𝑖 (𝑖 = 1, … , 𝑛); 
• 𝑏𝑗 – demand of destination 𝑗 (𝑗 = 1, … , 𝑚); 

• 𝑡𝑖𝑗 – transportation time of any non-zero quantity of the commodity from source 𝑖 to 

destination 𝑗 (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚); 

• 𝑑𝑖𝑗 – the maximal capacity of the route from source 𝑖 to destination 𝑗 (optional 

parameters) (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚). 

 

The variables denote quantities of the commodity through all the routes: 

• 𝑥𝑖𝑗 – amount of the commodity transported from source 𝑖 to destination 𝑗 

(𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚). 

 

The above parameters and variables are identical to those in the STP except for 𝑡𝑖𝑗. On the 

other hand, no cost-related parameters occur in BTP and TTMTP. The interpretation of 𝑡𝑖𝑗 can 

be just as simple as “the trip time from 𝑖 to 𝑗”. An assumption is also made that the delivery on 

each route is performed by a single vehicle. The value 𝑡𝑖𝑗 includes the “true” time in motion 

(the driving time), but it can also include time required for the rest or refueling or any other 

inevitable breaks. 

Finally, the delivery time of any (zero or positive) quantity of the commodity from source 𝑖 
to destination 𝑗 can be then expressed as the following conditional formula: 

 

𝑇𝑖𝑗(𝑥𝑖𝑗) = {
0 𝑥𝑖𝑗 = 0

𝑡𝑖𝑗 𝑥𝑖𝑗 > 0
  (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚). (1) 

 

The goal of transportation planning in the BTP model is to complete the deliveries of the 

commodity as soon as possible, assuming that they start simultaneously from all the sources. In 

other words, the latest time of completing all the deliveries is calculated. Alternatively, the goal 

can be formulated as all the deliveries must reach their destinations simultaneously, and the 

earliest start time of some deliveries is calculated. This goal means that, no matter if for the 

latest time of completing or the earliest start time, the maximum of 𝑇𝑖𝑗(𝑥𝑖𝑗) over all 𝑥𝑖𝑗 must 

be minimized. Finally, the objective function of BTP is the following: 

 

max 
𝑥𝑖𝑗≥0

{𝑇𝑖𝑗(𝑥𝑖𝑗)} → min   (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚). (2) 

 

The only difference between TTMTP and BTP is the objective function, which in TTMTP 

is just the sum of the transportation times on all the routes: 
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∑ ∑ 𝑇𝑖𝑗(𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

→ min. (3) 

 

Both BTP and TTMTP share the same set of constraints, initially introduced in STP. For 

simplicity of the notation, we also assume additionally that the problem under consideration is 

balanced, i.e., the sum of all the maximal possible supplies (the total maximal possible supply) 

is equal to the sum of all the demands (the total demand): 

 

∑ 𝑎𝑖

𝑚

𝑖=1

= ∑ 𝑏𝑗

𝑛

𝑗=1

, (4) 

 

Both objective functions (2) and (3) are subject to the constraints: 

 

∑ 𝑥𝑖𝑗

𝑛

𝑗=1

= 𝑎𝑖  (𝑖 = 1, … , 𝑚) (5) 

  

∑ 𝑥𝑖𝑗

𝑚

𝑖=1

= 𝑏𝑗   (𝑗 = 1, … , 𝑛) (6) 

  

𝑥𝑖𝑗 ≥ 0  (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚) (7) 

  

𝑥𝑖𝑗 ≤  𝑑𝑖𝑗  (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚) – optional. (8) 

 

Constraints (8) are imposed only if it is necessary, i.e., if there are upper bounds on the 

capacities of the routes. The details of using (8) will be discussed later. 

A remark on integer solutions is necessary. A well-known property of STP concerning the 

existence of integer-valued optimal solutions is now reminded. If all the parameters 𝑎𝑖 
(𝑖 = 1, … , 𝑛), 𝑏𝑗 (𝑗 = 1, … , 𝑚) and, if defined, 𝑑𝑖𝑗   (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚) are integer, then 

the constraints (5-8) define a feasible set in which that all the basic feasible solutions (the 

coordinates of the corner points of the feasible set) are all integer. In this case, the optimal 

solutions (one or more) are also integer because they are found among the basic feasible 

solutions. This property is not restricted to STP, however, it holds also for BTP and TTMTP, 

as explained below. 

In [39] it was proved that the objective function of BTP (2) is a concave function, and due 

to the concavity of the objective function, the search for an optimal solution is restricted to the 

set of the basic feasible solutions only. Thus, if 𝑎𝑖, 𝑏𝑗 and, if defined, 𝑑𝑖𝑗 in BTP are all integer, 

then the basic feasible solutions, and what follows, also optimal solutions are integer. This is 

why there is no need to impose integer constraints on 𝑥𝑖𝑗. 

As to TTMTP, it is mathematically equivalent to the Pure Fixed Charge Transportation 

Problem (PFCTP) [40] in which the fixed cost parameters are replaced with the time parameters 

𝑡𝑖𝑗. PFCTP itself is a special case of the Fixed Charge Transportation Problem (FCTP) [41], 

[42]. One of the basic properties of all the linear fixed charge problems is that the optimum is 

attained at a corner point of the feasible set of the continuous variables 𝑥𝑖𝑗 [42]. So again, 
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if 𝑎𝑖, 𝑏𝑗 and, if defined, 𝑑𝑖𝑗 in TTMTP are all integers, then the basic feasible solutions and 

optimal solutions are also integer. 

Both BTP and TTMTP, even though useful in many real-world applications, may be, in some 

circumstances, too simple to meet the needs of decision makers. In particular, they do not take 

into account the fact that the delivery process on any route may depend on the quantity of the 

commodity (obviously besides the dependence “zero time for no commodity/fixed time for a 

positive quantity of the commodity”). As it previously mentioned, this dependence was 

considered in [35] and [36] as the unloading time and in [36] as both the loading and unloading 

times. In all the above cases, loading and unloading times were assumed to be proportional to 

the quantity of the delivered commodity on each route. However, it is easy to notice that the 

abovementioned dependencies can be interpreted in a wider sense than that formulated in [35], 

[36] and [36].  Namely, it is not loading and unloading times only that sometimes must be 

included in the total delivery time. There can also be a possible increase in the transportation 

time itself caused by slowing down the vehicle carrying the heavy load. The sum of the loading 

time, the unloading time, and the transportation time increase, all of which depend on the 

quantity of the transported commodity being transported, will be referred to as the quantity-

dependent time. The quantity-dependent time added to the quantity transportation time 𝑡𝑖𝑗 gives 

the value of the actual delivery time. The simplest way to include in an optimization process 

the quantity-time dependence is to assume that the quantity-dependent time is proportional to 

the quantity of the commodity. Obviously, loading and unloading times of the same amount of 

commodity do not need to be equal. They may also differ at various locations due to the 

availability of necessary equipment and staff. The quantity-dependent transportation time 

increase may also be different on various routes, for example, because of various road quality. 

Extensions of BTP and TTMTP that include the quantity-dependent time into the 

optimization criteria as described above will be named the Quantity Dependent Bottleneck 

Transportation Problem (QDBTP) and the Quantity Dependent Total Time Minimizing 

Transportation Problem (QDTTMTP), respectively. 

We need to introduce the following additional parameters in order to extend the previously 

considered models to QDBTP and QDTTMTP, respectively: 

• 𝑡𝑖𝑗
′  – the unit quantity-dependent time, i.e., the sum of the times of loading and unloading 

one unit of the commodity on the route from source i to destination 𝑗 plus the increase 

of the transportation time resulting from transporting one unit of the commodity on the 

route from source i to destination 𝑗 (𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑚). 

 

The assumption that the quantity-dependent time is proportional to the quantity of the 

commodity means that the quantity-dependent time for a route connecting 𝑖 to 𝑗 is 𝑡𝑖𝑗
′  𝑥𝑖𝑗 and 

the delivery time for that route is 𝑇𝑖𝑗(𝑥𝑖𝑗) + 𝑡𝑖𝑗
′  𝑥𝑖𝑗. The parameters 𝑡𝑖𝑗

′  are used in the objective 

functions of QDBTP and QDTTMTP only. However, they all share the same set of constraints, 

initially introduced in STP (with one exception connected with integer constraints in QDBTP, 

discussed later). 

The objective function for QDBTP is: 

 

max 
𝑖,𝑗

{𝑇𝑖𝑗(𝑥𝑖𝑗) + 𝑡𝑖𝑗
′  𝑥𝑖𝑗} → min  (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚). (9) 

 

The objective function for QDTTMTP: 
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∑ ∑(𝑇𝑖𝑗(𝑥𝑖𝑗) + 𝑡𝑖𝑗
′  𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

→ min. (10) 

 

Both (9) and (10) are subject to the constraints (5-8).  

Whereas the constraints (5-8) are linear, both objective functions (9) and (10) are not linear 

and not smooth (see Figure 2). The lack of linearity and smoothness of the objective functions 

(9) and (10) results from nonlinearity of 𝑇𝑖𝑗(𝑥𝑖𝑗), (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚). Moreover in (9), 

nonlinear formulas 𝑇𝑖𝑗(𝑥𝑖𝑗) + 𝑡𝑖𝑗
′  𝑥𝑖𝑗 are arguments for another nonlinear function max. 

The calculations in [36] showed that optimizing the QDBTP models with the objective 

function (9) (transformed, but still nonlinear) may lead to ambiguous, suboptimal solutions. 

Instead, in this paper, a linearization, i.e., a transformation of QDBTP into a linear programming 

problem, is considered. Linearization of QDTTMTP is performed by using the same technique.  

Linearization described below consists of well-known transformations, applied to the two 

considered objective functions.  

The first step is linearization of 𝑇𝑖𝑗(𝑥𝑖𝑗). Whereas explicit constraints (8) restricting the route 

capacities in STP and, what follows, in BTP/QDBTP and TTMTP/ QDTTMTP are optional, it 

does not mean that 𝑥𝑖𝑗 can attain arbitrarily large values. Instead, implicit capacity constraints 

for all the routes exist. Indeed, by (5) and (6), the quantity of the transported commodity on 

each route cannot exceed the minimum of the maximal possible supply at the source and the 

demand at the destination: 

 

𝑥𝑖𝑗 ≤ 𝑀𝑖𝑗 = min
 

{𝑎𝑖, 𝑏𝑗}   (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚). (11) 

 

The value 𝑀𝑖𝑗 is an implicit upper bound on the commodity flow on the route connecting 𝑖 

to 𝑗. An optional maximal route capacity 𝑑𝑖𝑗 may affect the feasible set and an optimal solution 

only if 𝑑𝑖𝑗 < 𝑀𝑖𝑗. From a practical point of view, in BTP/QDBTP and TTMTP/ QDTTMTP, 

parameters 𝑑𝑖𝑗 must be specified explicitly, usually if the vehicle can carry the maximal payload 

not larger than 𝑀𝑖𝑗 (e.g., due to the technical specification of the vehicle or restrictions imposed 

by the condition of the road infrastructure). Let 𝑀 denote the maximal common upper bound 

on the commodity flow for all routes, which is the maximum of all the upper bounds 𝑀𝑖𝑗: 

 

𝑀 = max
𝑖,𝑗

𝑀𝑖𝑗 = max
𝑖,𝑗

min
 

{𝑎𝑖, 𝑏𝑗} = min{max 𝑎𝑖 , max 𝑏𝑗}   (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚).  (12) 

 

By (11) and (12): 

 

𝑥𝑖𝑗 ≤ 𝑀 (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚) (13) 

 

The inequalities (13) are satisfied for any 𝑥𝑖𝑗, so adding them as constraints does not affect 

the feasible set. After a slight transformation, they are used to linearize 𝑇𝑖𝑗(𝑥𝑖𝑗). 

Next, new auxiliary binary variables are introduced: 

• 𝑦𝑖𝑗 – indicating if a non-zero quantity of the commodity is transported along the route 

from 𝑖 to 𝑗 (𝑦𝑖𝑗 = 1 – “the route from 𝑖 to 𝑗 is used”/”one vehicle is travelling from 𝑖 to 

𝑗” ) or not (𝑦𝑖𝑗 = 0 – “the route from 𝑖 to 𝑗 is not used”/”zero vehicles are travelling from 

𝑖 to 𝑗”). (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚).  
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Let us notice that (1) can be expressed as: 

 

𝑇𝑖𝑗(𝑥𝑖𝑗) = {
0 = 𝑡𝑖𝑗 ∙ 0 𝑥𝑖𝑗 = 0

𝑡𝑖𝑗 = 𝑡𝑖𝑗 ∙ 1 𝑥𝑖𝑗 > 0
  (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚). (14) 

 

By the definition of 𝑦𝑖𝑗, (14) can be expressed as: 

 

𝑇𝑖𝑗(𝑥𝑖𝑗) = 𝑡𝑖𝑗𝑦𝑖𝑗  (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚). (15) 

 

The following inequalities define the relationships between 𝑥𝑖𝑗 and 𝑦𝑖𝑗 which provide an 

indication of whether a non-zero amount of commodity is transported (𝑥𝑖𝑗 > 0) or no 

commodity (𝑥𝑖𝑗 = 0) is transported: 

 

𝑥𝑖𝑗 ≤ 𝑀𝑦𝑖𝑗 (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚). (16) 

 

Inequalities (16) will become another group of constraints of the models, added to (5-8). 

Obviously, if 𝑦𝑖𝑗 = 1, then (16) is equivalent to (13) and it does not affect the feasible set. If 

𝑦𝑖𝑗 = 0, then also 𝑥𝑖𝑗 ≤ 0, what, together with 𝑥𝑖𝑗 ≥ 0 (7) results in 𝑥𝑖𝑗 = 0. 

The transformation (15) is sufficient to linearize QDTTMTP by replacing (1) with (15) in 

(3). However, this is not the case for QDBTP as another transformation of the optimization 

model must be done because of the presence of the max function. 

The objective function of QDBTP (9) can be expressed now in the form: 

 

max 
𝑖,𝑗

{𝑇𝑖𝑗(𝑥𝑖𝑗) + 𝑡𝑖𝑗
′  𝑥𝑖𝑗}  = max 

𝑖,𝑗
{𝑡𝑖𝑗𝑦𝑖𝑗 + 𝑡𝑖𝑗

′  𝑥𝑖𝑗}   (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚). (17) 

 

In order to “remove” the max function from (17), a new variable 𝑧 is defined: 

 

𝑧 = max
𝑖,𝑗

{𝑡𝑖𝑗𝑦𝑖𝑗 + 𝑡𝑖𝑗
′  𝑥𝑖𝑗}   (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚). (18) 

Since  

𝑡𝑖𝑗𝑦𝑖𝑗 + 𝑡𝑖𝑗
′  𝑥𝑖𝑗 ≤ max

𝑖,𝑗
{𝑡𝑖𝑗𝑦𝑖𝑗 + 𝑡𝑖𝑗

′  𝑥𝑖𝑗}   (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚) (19) 

 

then by (18) and (19): 

 

𝑡𝑖𝑗𝑦𝑖𝑗 + 𝑡𝑖𝑗
′ 𝑥𝑖𝑗 ≤ 𝑧  (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚). (20) 

 

If (20) is added as another group of constraints to (5-8) and (16), then minimizing a new 

objective function composed of a single variable 𝑧 is equivalent to minimizing the original 

objective function of QDBTP (3). The variable 𝑧 and constraints (20) are obviously redundant 

in QDTTMTP. 

Finally, the linearized versions of QDBTP and QDTTMTP are: 

                                     𝑧 → min   (QDBTP) (21) 

   

∑ ∑(𝑡𝑖𝑗𝑦𝑖𝑗 + 𝑡𝑖𝑗
′  𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

→ min   (QDTTMTP) (22) 
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The subject to the constraints (common for QDBTP and QDTTMTP, unless specified): 

 

∑ 𝑥𝑖𝑗

𝑛

𝑗=1

= 𝑎𝑖  (𝑖 = 1, … , 𝑚) (23) 

  

∑ 𝑥𝑖𝑗

𝑚

𝑖=1

= 𝑏𝑗   (𝑗 = 1, … , 𝑛) (24) 

  

𝑥𝑖𝑗 ≥ 0  (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚) (25) 

  

𝑥𝑖𝑗 ≤  𝑑𝑖𝑗   (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚) – optional (26) 

  

𝑦𝑖𝑗  binary (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚) (27) 

  

𝑥𝑖𝑗 ≤ 𝑀𝑦𝑖𝑗 (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚) (28) 

  

𝑡𝑖𝑗𝑦𝑖𝑗 + 𝑡𝑖𝑗
′ 𝑥𝑖𝑗 ≤ 𝑧  (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚) (QDBTP only) (29) 

  

𝑥𝑖𝑗 integer (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚) (if necessary, QDBTP only). (30) 

 

In order to provide consistent numbering for linear versions of QDBTP and QDTTMTP, 

some numbers of the formulas are repeated, where (23-26) are identical to (5-8), (28) to (16) 

and (29) to (20) respectively. 

Obviously, if all the 𝑡𝑖𝑗
′ = 0, then QDBTP and QDTTMTP – both as nonlinear and linear 

optimization models – reduce to BTP and TTMTP, respectively. 

The linear formulation of BTP (21), (23-29) is almost identical to CBTP Model II in [33]. 

The only difference is the lack of the budget (the maximal transportation cost) constraint, 

present in [33]. On the other hand, QDBTP in its linear version can be considered as an 

extension of CBTP Model II from [33] which includes the quantity-dependent time delivery 

time, and with the budget constraint being removed. 

Introducing the constraints (30) needs some more explanation. As it has been stated, if 𝑎𝑖,
𝑏𝑗 and, if defined, 𝑑𝑖𝑗  in BTP or TTMTP are all integer, then the basic feasible solutions, and 

what follows, also optimal solutions are integer. This property also holds for QDTTMTP which 

is mathematically equivalent to FCTP, where the fixed cost parameters are replaced with the 

time-parameters 𝑡𝑖𝑗
′  and the variable cost parameters are replaced with the time-parameters 𝑡𝑖𝑗. 

Then, by [42], the existence of integer optimal solutions is “guaranteed” in QDTTMTP like in 

TTMTP. However, unlike in case of BTP, in QDBTP integer constraints on 𝑥𝑖𝑗 must be 

imposed, if necessary. Solutions of example problems later in this paper showed that without 

imposing integer constraints on the variables 𝑥𝑖𝑗 integer optimal values of 𝑥𝑖𝑗 in QDBTP are 

not “guaranteed” even if the parameters if 𝑎𝑖, 𝑏𝑗 and, if defined, 𝑑𝑖𝑗 are all integers. 

Before introducing further theoretical considerations and presenting the results of 

calculations for example problems, an important remark on the variables 𝑦𝑖𝑗 must be made. The 

variables 𝑦𝑖𝑗 are auxiliary binary variables that are defined as indicators of a non-zero (𝑦𝑖𝑗 = 1) 

or zero (𝑦𝑖𝑗 = 0) flow of the commodity from source 𝑖 to destination 𝑗. However, because of 
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properties resulting from (28), the interpretation of the value 𝑦𝑖𝑗 = 1 as an indicator of a non-

zero flow from source 𝑖 to destination 𝑗 is to some extent ambiguous. Namely, if 𝑦𝑖𝑗 = 0, then 

𝑥𝑖𝑗 = 0 what means that the value 𝑦𝑖𝑗 = 0 indicates zero flow of the commodity from 𝑖 to 𝑗, 

but not necessarily each zero flows must be “marked” by 𝑦𝑖𝑗 = 0. If 𝑦𝑖𝑗 = 1, then, by (28), 

there can be either 𝑥𝑖𝑗 > 0 or 𝑥𝑖𝑗 = 0 what means that the value 𝑦𝑖𝑗 = 1 indicates all the non-

zero flows of the commodity, but it may also indicate zero flows on some routes. This ambiguity 

concerning the interpretation of 𝑦𝑖𝑗 = 1 does not affect finding an optimal solution – neither of 

QDBTP nor of QDTTMTP – understood as all the values 𝑥𝑖𝑗  for which the objective function 

is minimized. However, in QDBTP it is possible that for some optimal values 𝑥𝑖𝑗 = 0, the 

corresponding optimal values 𝑦𝑖𝑗 = 1. It is necessary to know the above fact in order to 

understand correctly the results of the calculations. On the other hand, a couple of values 𝑦𝑖𝑗 =

1 and 𝑥𝑖𝑗 = 0 can never happen in an optimal solution of QDTTMTP (it is possible only in the 

case of nonoptimal feasible solutions). 

In real-world applications, BTP/QDBTP and TTMTP/QDTTMTP do not need to be 

balanced problems. If the total maximal possible supply of sources is not equal to the total 

demand of destinations, i.e., (4) does not hold, or even more sophisticated so-called mixed 

constraints occur, then (5) or (6) must be replaced with appropriate sets of constraints.  

 

 

3. RESULTS  

 

A linear programming formulation of QDBTP was verified by addressing the problems 

known from the literature of the subject, namely from [35] and [36]. The problem considered 

in [36] concerns some extension of QDBTP with the opportunity of using multiple vehicles per 

route, and this is why it was not fully suitable for comparative calculations, as the models with 

one vehicle per route only are considered in this paper. Both [35] and [36] consider the 

unloading time only as the quantity-dependent component of the delivery time. However, since 

the definition of QDBTP joins together all the delays added to the “standard” transportation 

time on any route as the quantity-dependent time, the abovementioned examples are obviously 

instances of QDBTP. Below there are more precise characteristics of the examples and the 

solutions obtained in the quoted papers compared to the solutions calculated for this paper. All 

the solutions calculated for this paper were obtained by using linear programming with binary 

variables 𝑦𝑖𝑗  and, when necessary, integer constraints imposed on variables 𝑥𝑖𝑗. Detailed 

references to the formulas for each model are given below the tables with the results (also for 

quoted results of nonlinear calculations) [44]. 

As to the optimization software, Excel 365 Version 2406 and the add-in OpenSolver 2.9.4 

[43] running on Windows 11 PRO 23H2 were used. The computer was a Dell Latitude 5440 

with a 13th Gen Intel Core i5-1345U 1.60 GHz processor, 16 GB of RAM, and NVMe SN740 

WD 1 TB SSD. 

Whereas a commonly used symbolic notation for optimal solutions of optimization problems 

is to use the symbols of the variables with the asterisk in the superscript, in this section the 

meaning of this notation will be widened. The symbols 𝑥𝑖𝑗
∗  and 𝑦𝑖𝑗

∗   will stand for a solution 

calculated by the optimization software, no matter whether it is optimal or suboptimal. 

Analogically, in this section 𝑡𝑚𝑖𝑛 stands for the minimal delivery time calculated by the 

optimization software. This time may be either optimal or suboptimal. 

Whereas the problems both from [35] and [36] were solved, the results for the problem from 

[36] only are  presented below. The reason is that the problem from [35] turned out to have the 
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same delivery time when solved as a linear programming problem. Instead, in the case of the 

problem from [36] using linear optimization resulted in a significant improvement of the 

solution.  

 

Example 

Problem from [36]: 9 sources, 16 destinations, unbalanced (total possible supply 171, total 

demand 158), non-zero unloading time at each destination, and an integer-valued optimal 

solution required. The problem is based on real-world data where sources and destinations are 

located in 25 cities in Poland. The input data – parameters of the problem are presented in 

Table 1. 

 

Tab. 1 

Parameters of the example problem 

 

 Transportation times 𝑡𝑖𝑗  

Source/ 

Destination 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

Supplies 

𝑎𝑖 

S1 2 6 5 6 6 8 9 14 11 9 12 14 10 11 13 15 15 

S2 4 2 7 5 3 8 5 9 8 7 10 11 11 11 12 13 20 

S3 7 1 8 5 3 8 2 6 5 6 8 8 10 9 10 10 23 

S4 6 3 5 3 1 5 3 6 4 3 6 7 6 6 7 8 16 

S5 7 6 5 2 3 2 6 8 4 2 4 7 3 4 5 8 21 

S6 11 7 9 7 6 8 5 3 2 4 4 2 7 7 6 5 17 

S7 6 10 2 3 5 1 10 11 7 5 7 9 3 4 6 8 19 

S8 14 11 12 9 9 10 8 5 4 6 4 1 9 7 6 3 22 

S9 13 10 9 9 8 6 9 8 5 6 2 4 5 3 2 2 18 

Demands 𝑏𝑗 12 9 7 15 9 10 12 10 18 9 6 12 6 6 8 9  

Unloading 

times 𝑡𝑖𝑗
′   

0.33 0.33 0.17 0.5 0.33 0.33 0.33 0.33 0.67 0.33 0.17 0.5 0.17 0.17 0.33 0.33 
 

Source: [36] 

 

The calculations in [36] were performed for the model with the objective function (9) 

(transformed) subject to (5) (with = replaced with ≤), (6-7) and (30) in three variants (two of 

them including additional constraints (8)). The purpose of introducing additional constraints 

was to “shrink” the feasible set and, in this way, improve the result of calculations. Those 

additional constraints had nothing to do with considering any actual restrictions of the flow of 

commodities and were in fact just a “mathematical trick” serving as attempts to improve 

suboptimal solutions.  

• Variant 1 – the problem as described above without additional constraints (8). 

• Variant 2 – the problem like in Variant 1 in which additional constraints (8), as described 

below, were added. Moreover, a new upper bound 𝐷, lower than the lowest – “natural” 

common upper bound 𝑀 = 18 defined in (12), is imposed on the amount of the 

commodity transported on each route 𝑥𝑖𝑗
 . This upper bound 𝐷 = 8 – the average of the 

solution of Variant I, i.e., the average of 𝑥𝑖𝑗
∗   (𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚) calculated in 

MATLAB and in Excel. The additional constraints (8) were 𝑥𝑖𝑗 ≤  𝑑𝑖𝑗 = 𝐷 (𝑖 =

1, … , 𝑛;  𝑗 = 1, … , 𝑚). 
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• Variant 3 – like Variant 2 but the upper bound imposed on variables 𝑥𝑖𝑗
  is decreased to 

the largest 𝑥𝑖𝑗
∗  less than the upper bound in Variant 2 (𝐷 = 6). 

 

Calculations whose results are presented in this paper were performed for the model (21) 

subject to (23) (with = replaced with ≤), (24-25), (27-30), 𝑀 = 18 (a linear QDBTP). 

A comparison between the results from [36] and the ones calculated for this paper is presented 

in Table 2. 

The parameters 𝑡𝑖𝑗
′  are unloading times only, so 𝑡1𝑗

′ = 𝑡2𝑗
′ = 𝑡3𝑗

′ = 𝑡4𝑗
′ = 𝑡5𝑗

′ = 𝑡6𝑗
′ = 𝑡7𝑗

′ =

𝑡8𝑗
′ = 𝑡9𝑗

′  for each 𝑗 = 1,2, … ,16 and there is no need to repeat them in many rows. Unloading 

times other than 0.5 stand for rounded values of fractions: 0.17 for 1/6, 0.333 for 1/3 and 0.67 

for 2/3 what correspond for 10, 20 and 40 minutes, respectively. 

 

Tab. 2 

 

A brief comparison of the results for Example 2 

 

 
Solution in [36] – 

nonlinear problem 

Solution calculated for this 

paper – linear problem 

Software 

Excel (unknown 

version) with 

built-in Solver 

MATLAB 

(unknown version) 

Excel 365 with add-in 

OpenSolver 2.9.4 

Calculated minimal  

delivery time 𝑡𝑚𝑖𝑛 

Variant 1:13.3 Variant 1: 12.72 

6.333 Variant 2: 9.3 Variant 2: 12.34 

Variant 3: 9.0 Variant 3: 13.98 

Number of used  

vehicles/routes for 

𝑡𝑚𝑖𝑛 

Variant 1: 80 Variant 1:  24 

33 Variant 2: 61 Variant 2: NA 

Variant 3: 62 Variant 3: NA 

Total delivery  

time for 𝑡𝑚𝑖𝑛 

Variant 1: 492 Variant 1: 176 

179 Variant 2: 381 Variant 2: NA 

Variant 3: 384 Variant 3: NA 

 

Since Variants 2 and 3 impose upper limits on the quantity of the commodity for each route, 

then the solutions for the nonlinear model are only fully comparable to the linear model for of 

Variant 1. Whereas the values 𝑡𝑚𝑖𝑛 returned by optimization software theoretically should be 

equal for the nonlinear model in Variant 1 and the linear model, in fact they were over twice as 

bad for nonlinear optimization. The above results show that nonlinear optimization can be an 

inefficient way of solving QDBTP, at least for some of its instances. Calculations in Excel 

resulted in significant improvements of the value 𝑡𝑚𝑖𝑛 when additional upper limits on 𝑥𝑖𝑗were 

added (Variant 2 vs Variant 1: 𝑡𝑚𝑖𝑛 better by 4 hours/30.08%, Variant 3 vs Variant 1: 𝑡𝑚𝑖𝑛 

better by 4.3 hours/32.33%). However, those results are still much worse that 𝑡𝑚𝑖𝑛 = 6.333 

obtained for the linear model. Calculations in MATLAB showed that additional upper limits on 

𝑥𝑖𝑗 improved the result slightly (Variant 2 vs Variant 1: 𝑡𝑚𝑖𝑛 better by 0.38 hours/2.99%) or 

even made it worse (Variant 3 vs Variant 1: 𝑡𝑚𝑖𝑛 worse by 1.26 hours/9.91%). Anyway, it is 

worth noting that the solution for Variant 1 calculated in MATLAB results in lower values for 

the number of used vehicles/routes and the total delivery time in comparison with any other 

solution calculated in Excel, no matter if the model was nonlinear or linear.  
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Dropping the integer constraints imposed on 𝑥𝑖𝑗 results in a solution with 𝑡𝑚𝑖𝑛 = 6 in which 

the variables 𝑥𝑖𝑗are partially non-integer. The above fact proves the necessity of using integer 

constraints on 𝑥𝑖𝑗 in QDBTP. 

The data from Table 1 was also used for an instance of the QDTTMTP problem. The minimal 

total delivery time on all the routes turned out to be 101 hours, the number of used vehicles/ 

routes was 17 and all the deliveries were completed after 12.3333 hours, which is the time of 

delivering 11 units of the commodity from source 3 to destination 9. 

 

 

4. DISCUSSION  

 

This paper summarizes the concept of considering delays depending proportionally on the 

quantity of the transported commodity in time minimization transportation planning. This 

summary includes extending the existing interpretation of the time-quantity dependence, 

naming the optimization problems, determining connections with analogical models, and 

providing an efficient way of calculating the optimal solutions [46].  

The main goals of the paper are discussed below. 

The first goal was to just formulate extensions of BTP and TTMTP to the case in which the 

quantity of the commodity causes the increase of the overall delivery time because of loading 

and unloading the commodity as well as slowing down the trip. Those extensions were named 

the Quantity Dependent Bottleneck Transportation Problem (QDBTP) and the Quantity 

Dependent Total Time Minimization Transportation Problem (QDTTMTP), respectively. 

Whereas QDBTP is not a new extension in the mathematical sense, the possible interpretation 

of the quantity-time dependence was widened to compare with that presented in the literature. 

Newly introduced QDTTMTP turned out to be a “time optimization version” of the Fixed 

Charge Transportation Problem (FCTP).  

The second goal was to express QDBTP and QDTTMTP as linear programming problems, 

based on analogical formulations for BTP and QDBTP. Those formulations bring many 

advantages.  

1. They allow one to find an optimal solution in cases when solving an original nonlinear 

problem – because of limitations of optimization software – may not. 

2. It allows for using general-purpose optimization software for solving, i.e., there is no 

necessity to create dedicated solving algorithms. 

 

It is necessary to say that the linear formulation of QDBTP (and, to some extent, also of 

QDTTMTP) results also in some issues that may be perceived negatively. However, the issues 

are more technical features than real disadvantages. The issues are as follows: 

1. In the linear formulation of QDBTP or QDTTMT for each variable 𝑥𝑖𝑗 standing for the 

quantity of the transported commodity, an auxiliary 𝑦𝑖𝑗 binary variable is introduced. It 

means that twice as many variables are required to compare with the linear formulation. 

Moreover, the number of linear constraints to compare with the nonlinear formulation 

increases by 𝑚 ∙ 𝑛 for QDTTMTP and by 2𝑚 ∙ 𝑛 for QDBTP. 

2. In case of QDBTP, on some routes there may be optimal values 𝑦𝑖𝑗
∗ = 1 “coupled” with 

𝑥𝑖𝑗
∗ = 0. This phenomenon means that some routes are incorrectly marked as “used”, but 

it does not affect the optimality of the solution in 𝑥𝑖𝑗 variables. The only practical 

consequence is that the total number of used routes/vehicles must be calculated as the 

number of 𝑥𝑖𝑗
∗  for which 𝑥𝑖𝑗

∗ > 0, (sgn 𝑥𝑖𝑗
∗ ) not the number of 𝑦𝑖𝑗

∗  for which 𝑦𝑖𝑗
∗ = 1. 
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The third goal was to discuss the existence of the “guaranteed” integer optimal solutions in 

the optimization models under consideration. It turned out that, unlike in case of BTP, QDBTP 

does not have “guaranteed” integer optimal solutions (in 𝑥𝑖𝑗 variables) even if all the maximal 

supplies of sources and the demands of destinations are integer. Technically speaking, it means 

that whenever the amount of the commodity on each route must be an integer, imposing the 

integer constraints on variables 𝑥𝑖𝑗 is necessary. This feature may be a disadvantage only in 

cases when the abovementioned integer constraints are the reason to slow down the calculations 

unacceptably.  

 

 

5. CONCLUSIONS  

 

In this paper, it was shown that QDBTP formulated as a linear programming problem can 

be an efficient approach to time-critical transportation planning. The most important advantage 

is that this approach results in obtaining optimal solutions in cases in which solving original 

nonlinear problems failed. Moreover, problems of that kind can be solved optimally using 

general purpose optimization software without the necessity of creating dedicated algorithms 

and software that implement them. The abovementioned fact does not exclude, however, 

searching for dedicated algorithms if using standard linear programming turns out to result in 

an unacceptably long time to solve the problems essential for real-world applications. The linear 

formulation of QDBTP also allows for easily formulating problems with second-level 

optimality criteria regarding many possible economic and ecological aspects of transportation 

planning. 

QDTTMTP - an extension of TTMTP with an analogical quantity-dependent component of 

the objective function as well as its linear formulation was also introduced in the study. 

A possible occurrence of multiple optimal solutions in QDBTP makes it possible to consider 

second-level optimality criteria for QDBTP. Namely, for a given 𝑡𝑚𝑖𝑛 (the minimal delivery 

time – the optimal value of the objective function of QDBTP) there can be alternative solutions  

𝑥𝑖𝑗
∗  which differ in features such as like the total delivery time, number of used vehicles/routes, 

delivery cost, fuel consumption, mileage. Each of those features (as well as possibly some 

other) can become a second-level optimality criterion, and a new optimization problem can be 

formulated. Such a problem is of the form “minimize a second-level optimality criterion (e.g., 

the total delivery cost) subject to the constraints of the initial problem completed the delivery 

time set to 𝑡𝑚𝑖𝑛. Whereas the idea of second-level optimality criteria for QDBTP is quite simple, 

it requires a separate paper to be presented precisely. 

Both QDBTP and QDTTMTP can obviously be developed further in many aspects. Some 

propositions are mentioned below. The two models can easily be extended to include issues of 

packing and storage of the transported commodity or the possibility of using multiple vehicles 

on a single route.  

New issues may arise if we consider using electric-powered vehicles (EV). Time 

minimization in transportation planning assumes implicitly travelling with the maximal speed 

and acceleration allowed by the traffic law and technical-safety requirements. However, the 

speed and, especially, acceleration strongly affect consumption of energy stored in batteries of 

the vehicles [44]. Moreover, the amount of energy required to accelerate the vehicle increases 

with the mass of the transported cargo. Even if we take into account energy recuperation during 

braking, there is still a possibility that at some weight of the carried cargo, a “breaking point” 

can be attained at which an extra recharging of the batteries during the trip is necessary. Because 
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recharging the batteries in EVs usually takes much longer compared with refueling the 

comparable internal combustion vehicles, the total delivery time may increase dramatically. 

The above considerations show that there is a need to develop QDBTP and QDTTMTP versions 

for EVs. They must reflect the fact that, when the weight of the cargo exceeds some level, then 

there is a necessity of changing the driving style to a slower, but more energy-saving one, or, if 

it is impossible to avoid, to add the recharging time to the total trip time. 

Finally, reliable modeling the delivery plans may not be restricted to deterministic cases 

only. It may also require taking into account various aspects of possible uncertainty. For 

example, an important factor can be the random availability of the real-world fleets of vehicles. 

A promising approach seems to be using the readiness of each vehicle described by semi-

Markov reliability models [45]. A draft idea is to combine the parameters of the deterministic 

QDBTP and QDTTMTP models with parameters of the models in [45] in order to obtain tighter, 

readiness-constrained capacity bounds. The above idea is intended to be the base for a possible 

further development of non-deterministic extensions of the time-minimizing delivery models. 

At the same time, the study presents certain limitations as follows. 

• While the paper highlights the advantage of formulating QDBTP as a linear programming 

problem (LP) to overcome the challenges of the original nonlinear formulation, it also 

explicitly acknowledges a crucial limitation: the potential for unacceptably long 

addressing times when employing general-purpose LP solvers for problems of a scale 

relevant to real-world applications. Linear programming can still face significant 

computational burdens with a large number of variables and constraints. Real-world 

transportation problems often involve numerous origins, destinations, commodities, 

vehicle capacities, and time windows. The linear formulation of QDBTP, while enabling 

optimality guarantees, might generate a problem instance with a size that overwhelms 

standard LP solvers, leading to impractical solution times for time-sensitive planning 

scenarios. This limitation suggests that the practical applicability of the proposed LP 

formulation might be restricted to smaller-scale problems or might necessitate the use of 

highly optimized commercial LP solvers.  

• The research conducted introduces the valuable concept of leveraging the potential for 

multiple optimal solutions in QDBTP to optimize based on secondary criteria once the 

minimal delivery time is achieved. However, this remains a conceptual introduction 

without a concrete formulation or detailed analysis. The paper states that "the idea of 

second-level optimality criteria for QDBTP is quite simple; it requires a separate paper 

to be presented precisely." This clearly indicates that the actual mathematical formulation 

of how to incorporate and optimize these secondary objectives within the constraints of 

the primary (minimal delivery time) problem is not developed within the current study. 

Questions remain about how to effectively model these criteria, how to handle potential 

trade-offs between different secondary objectives, and the computational implications of 

addressing such second-level optimization problems. This limitation entails that the paper 

does not provide the methodological framework or computational validation for 

implementing these second-level optimizations.  
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