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CONTROLLING THE MOVEMENT OF HEXACOPTER ALONG 

THE INTENDED ROUTE WITH ENGINE FAILURE 
 

Summary. This article investigates the issue of controlling the movement of a 

hexacopter-type unmanned aerial vehicle around a route. The movement of the 

hexacopter is modeled as the motion of a rigid body, taking into account 

gravitational forces and aerodynamic resistance forces. The spatial orientation of 

the hexacopter is expressed using quaternions. The movement route is considered 

as a broken line consisting of straight-line segments, and parameters that control 

the hexacopter's flight on the considered straight-line segment of the route are 

determined when one of its engines fails. The mathematical rationale for how to 

control the operational engines to continue the hexacopter's movement as before in 

the event of an engine failure is provided. 

Keywords: hexacopter, route, control parameters, engine failure, quaternion, 

spatial orientation, unmanned aerial vehicle 

 

 

1. INTRODUCTION 

 

Recently, with the widespread application of multi-engine drones, various types have 

become particularly popular depending on their purpose and the demands placed upon them [1, 

2, 3]. Unlike single-engine drones, the failure of engines in multi-rotor devices can lead to 

safety-related issues. Numerous published articles suggest solving this problem by redesigning 
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the control law or control power [4, 5]. However, this approach is challenging to implement 

because altering the control power in this manner usually requires the addition of extra devices. 

Several studies have been conducted on the detection of engine failure, maneuverability of 

unmanned aerial vehicles (UAVs) with engine failure, and the distribution of control among 

engines [6-8]. Rapid detection of an engine failure in a UAV is crucial for subsequent actions. 

A novel method for fault diagnosis using thermal imaging was presented in [9]. Lu [10] 

proposed a Fault Detection and Isolation (FDI) system capable of instantly detecting and 

isolating a failed engine in quadcopters with a completely failed engine. Merheb [11] suggested 

a search table to convert a quadcopter into a tri-rotor in the event of a complete failure of one 

rotor. Nagarjuna and Suresh developed a safe landing sequence [12]. Lee and colleagues used 

two servo motors to control the relative roll and pitch attitudes of a quadcopter to maintain its 

stability when a motor failure is detected [13]. Wang and Zhang restructured control commands 

using a sliding mode control algorithm [14]. 

Regarding the above-mentioned studies, several questions remain unanswered: first, most 

previous research has only considered quadcopters with a single engine failure. Secondly, there 

is not enough material on how to control a hexacopter using quaternion theory methods in such 

situations. 

In this article, the issue of controlling a hexacopter when one of its engines fails under power 

constraints is examined. The proposed system can assist in the control design when there is an 

engine failure and increase the likelihood of a successful emergency landing. 

For clarity, the engines of the hexacopter will be numbered in the sequence shown in Figure 

1. The rotational directions of the engine propellers are schematically presented in the same 

figure. 

 

 
Fig. 1. Rotation direction of the hexacopter’s propellers 

 

In scientific and technical literature, various simulation models of hexacopter movement can 

be found. Depending on the characteristics of the sensors used in solving the feedback 

automatic control problem, the flight models of hexacopters differ from one another. During 

the research, the use of MPU6050 sensors in the studied UAV made it more appropriate to use 

quaternions as orientation parameters in its mathematical model [15]. This is because MPU6050 

sensors measure the rate of change of orientation angles rather than the angles themselves. 

Numerous articles by various authors have been dedicated to the model of a UAV expressed 

using quaternions [16, 17, 18, 19]. The model considered here essentially corresponds to the 

model in [17]. 
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2. PROBLEM STATEMENT 

 

When considering the case where there are no power limitations on the hexacopter's engines 

(referred to as the normal case below), it becomes apparent that the control of a hexacopter 

along a straight-line trajectory, even with one engine failure, is fundamentally similar to the 

control of a quadcopter. This situation also suggests that a hexacopter can be effectively 

controlled along a straight-line trajectory even if two symmetrically positioned engines fail. 

The failure of one engine in a hexacopter refers to the scenario where one of its six engines is 

non-operational. In such cases, it is typically recommended to shut down the engine 

symmetrically positioned with respect to the hexacopter's center. It is evident that when the 

number of engines is reduced from six to four, their power needs to be increased. However, a 

question arises: can the operation of one failed engine be compensated by the remaining five 

engines in a hexacopter if there are power limitations? This article investigates this issue. 

Below, the mathematical formalization and solution of the problem are provided. 

The mathematical model of the hexacopter is expressed through the interaction between 

quantities calculated in local and global coordinate systems. Let us introduce the coordinate 

systems used, as shown in the following figure (Figure 2): 

 

 
 

Fig. 2. The local and inertial coordinate systems 

 

𝑂𝐺𝑋𝑌𝑍 is the inertial coordinate system associated with the ground, while oxyz is the local 

coordinate system linked to the hexacopter, with its origin at the hexacopter's center of gravity, 

used to determine its orientation in space. 

For clarity, let's assume that the origin 𝑂𝐺 of the 𝑂𝐺𝑋𝑌𝑍 system is fixed at a certain point on 

the Earth's surface. The 𝑂𝐺𝑌 axis of the 𝑂𝐺𝑋𝑌𝑍 coordinate system points north, the 𝑂𝐺𝑋 axis 

points east, and the 𝑂𝐺𝑍 axis is directed upwards, perpendicular to both the 𝑂𝐺𝑋 and 𝑂𝐺𝑌 axes. 

Let's assume that the ox axis of the 𝑂𝑥𝑦𝑧 system is aligned along the hexacopter's first arm, 

the 𝑂𝑦 axis is perpendicular to the ox  axis and lies in the plane of the hexacopter's arms, and 

the 𝑂𝑧 axis is aligned along the hexacopter's symmetry axis, perpendicular to the 𝑂𝑥𝑦 plane. In 

the case of horizontal stillness, it is assumed that the oz axis is directed upwards, and the 𝑂𝑥𝑦𝑧 

system is a right-handed coordinate system. 

 

 

3. ORIENTATION GIVEN BY QUATERNIONS 

 

Brief information about quaternions is needed to express the orientation of the UAV in this 

study. 
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The general form of a quaternion is given as kqjqiqqq 3210  , which is a 4-

dimensional hypercomplex number [15]. Here, 3210 ,,, qqqq  are real numbers, and kji ,,  are 

imaginary units. The multidimensional nature of quaternions makes them a convenient and 

adequate tool for representing rotation angles. Using quaternions allows us to represent the 

spatial position of a flying vehicle as follows: 
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Here ),,( 321 uuuu   is the rotation axis vector to achieve the current rotational state of the 

aircraft, and  φ is the principal rotation angle [20]. Specifically, if the rotation axis coincides 

with the oy axis, and φ is the principal rotation angle, then )0,1,0(u and: 
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Assume that the local coordinate system oxyz is rotated by a vector q relative to the inertial 

coordinate system 𝑂𝐺𝑋𝑌𝑍. Then, to calculate the coordinates of a vector given in the local 

coordinate system in the inertial coordinate system, the following transformation matrix can be 

applied [20]: 
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It is clear that to find the coordinates of a vector given in the 𝑂𝐺𝑋𝑌𝑍coordinate system 

relative to the oxyz coordinate system, the inverse of the transformation matrix 1Q  should be 

applied. The elements of the inverse matrix are denoted as follows: 

 

 



















333231

232221

131211

1

ppp

ppp

ppp

Q . (4) 

  



Controlling the movement of hexacopter along the intended route with engine failure 153. 

 

4. MATHEMATICAL MODEL OF HEXACOPTER 

 

As mentioned earlier, for simplicity, the mathematical model of the UAV will not consider 

gravitational and aerodynamic forces. 

At a given time 0t , let the hexacopter's center of gravity have the coordinates 𝑂𝐺𝑋𝑌𝑍 in 

the )(),(),( tZtYtX  inertial coordinate system. Also, let the orientation of the local oxyz 

coordinate system relative to the 𝑂𝐺𝑋𝑌𝑍 inertial coordinate system be expressed by the 

quaternion ktqjtqitqtq )()()()( 3210  . Denote the angular velocity of the rotation of the 𝑖-

th rotor of the hexacopter by i . Then, the movement of the hexacopter, i.e., the rotation of the 

rotors  ),...,( 61    and the translational movement ))(),(),(()( tztytxtx  , will be described 

by the following equations, where the rotation vector and the quaternion 

))(),(),(),(( 3210 tqtqtqtqq   are interrelated. If we denote the velocity of the hexacopter in the 

local oxyzcoordinate system as ))(),(),(()( tvtvtvtv zyx , then the equations of motion 

expressed in quaternions for the hexacopter will be written as follows [21]: 

 

 
.)()(

)( 2
wtvtvcgpc

dt

tdv
m AA 

 (5) 

 

Here, m is the mass of the hexacopter, Ac  is the drag coefficient, g  is the acceleration due 

to gravity, and p  is a vector composed of the elements of the last column of the inverse matrix 
1Q . 

If we denote the angular velocity of the hexacopter as ))(),(),(()( twtwtwtw zyx , then, 

based on the total moment ),,( 321 MMMM   exerted on it, the following equations can be 

written [19, 20]: 
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Here J  is the inertia matrix. The moment M depends on the velocities 621 ...,,   as 

follows [17]: 
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Here, 0l  is the distance between the center of gravity of the hexacopter's main body and the 

center of gravity of the motor located at the end of its arm (Figure 3), k is the thrust coefficient 

of the motor, and b  is the drag coefficient. 
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Fig. 3. Structural dimensions of the hexacopter 

 

 

It should be noted that starting from the angular velocity w  found in equation (6), the current 

orientation quaternion of the hexacopter can be calculated by solving the following system of 

ordinary differential equations (Poisson's kinematic equations) [21]: 
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5. MATHEMATICAL FORMALIZATION OF PROBLEM 

 

As mentioned above, for simplicity, the mathematical model of the UAV takes into account 

gravitational force, aerodynamic forces, and the thrust force of the engines. The third equation, 

which directly includes the rotational speeds of the engines, can be written as follows: 
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Here: 
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Considering the condition that the torques generated by the hexacopter's engines are equal 

to zero during its linear motion, in equation (7): 
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Thus, in order to provide the linear motion of the hexacopter at a certain velocity v , the 

quantities 621 ...,,   must satisfy the system of equations (9)-(11). 

 

 

6. PROVIDING CONTROL IN NORMAL OPERATING MODE. 
 

Assume that all the engines of hexacopter are functioning normally. In this case, let us 

investigate the problem of determining the quantities 621 ...,,   that satisfy the system of 

equations (9)-(11). 

For every k, let us denote 
2

k

 

as k . Then the system (9)-(11) can be written as follows: 
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As it can be seen, equation (12) is a system of linear equations written with respect to six 

unknowns, and its rank is equal to four. Therefore, this system has infinitely many distinct 

solutions. The following optimality criterion can be used to select the most suitable solution 

from the set of possible solutions that align with the essence of the problem: 

 

 

 6,...,1,min,)( 2  


jij

ji

i  . (13) 

 

The minimization of the functional essentially requires that the quantities i , and 

ultimately the rotation frequencies 
2

k , be as close as possible to each other. This requirement 

is justified by the fact that during the control of the straight-line motion of the UAV, its engines 

should be loaded as equally as possible. 

Mathematically, the problem defined by equations (12) and (13) is a constrained 

optimization problem with respect to the variables k . To solve this, the Lagrange multipliers 

method can be used [20]. For this purpose, let us denote the expressions on the left side of the 

equations (12) as 4321 ,,,  . Then, by introducing the multipliers 4321 ,,,  , the 

Lagrange function for the problem defined by equations (12) and (13) can be written as follows: 

 

 44332211   . (14) 

 

Thus, the constrained optimization problem defined by equations (12) and (13) reduces to 

the problem of finding the unconstrained minimum of the functional (14). To find the minimum 

of the   functional, let's compute its partial derivatives with respect to the variables 61,...,  

and 41,...,  and set them equal to zero. This will result in the following system of equations: 
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{
 
 
 
 
 

 
 
 
 
 

10𝜉1 − 2𝜉2 − 2𝜉3 − 2𝜉4 − 2𝜉5 − 2𝜉6 + 𝜆2 + 𝜆3 + 𝜆4 = 0,
−4𝜉1 + 20𝜉2 − 4𝜉3 − 4𝜉4 − 4𝜉5 − 4𝜉6 − 2𝜆1 − 𝜆2 − 2𝜆3 + 2𝜆4 = 0,
−2𝜉1 − 2𝜉2 + 10𝜉3 − 2𝜉4 − 2𝜉5 − 2𝜉6 + 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = 0,
−2𝜉1 − 2𝜉2 − 2𝜉3 + 10𝜉4 − 2𝜉5 − 2𝜉6 − 𝜆2 − 𝜆3 + 𝜆4 = 0,

−4𝜉1 − 4𝜉2 − 4𝜉3 − 4𝜉4 + 20𝜉5 − 4𝜉6 + 2𝜆1 + 𝜆2 + 2𝜆3 + 2𝜆4 = 0,
−2𝜉1 − 2𝜉2 − 2𝜉3 − 2𝜉4 − 2𝜉5 + 10𝜉6 − 𝜆1 − 𝜆2 − 𝜆3 + 𝜆4 = 0,

−𝜉2 + 𝜉3 + 2𝜉5 − 𝜉6 = 0,
2𝜉1 − 𝜉2 + 2𝜉3 − 2𝜉4 + 𝜉5 − 2𝜉6 = 0,
𝜉1 − 𝜉2 + 𝜉3 − 𝜉4 + 𝜉5 − 𝜉6 = 0,
𝜉1 + 𝜉2 + 𝜉3 + 𝜉4 + 𝜉5 + 𝜉6 = 0.

 (15) 

 

If we solve this system of equations using Cramer's rule, we will obtain the following results: 

 

 0654321 166,0 f  ,

 

)0( 4321   . (16)

  

Based on the calculated values of the quantities 61,..., , we obtain the following values for 

the rotation frequencies of the propellers: 

 

  cos4,0654321 mgvvc zA  . (17) 

 

Thus, for the hexacopter to fly in a straight line, it is first brought into the appropriate 

orientation and achieves the desired pitch by adjusting the rotation frequencies of the propellers. 

After that, it is controlled along the corresponding trajectory using the engines operating at the 

rotation frequencies given by equation (17). (It should be noted that the calculation of the 

propeller rotation frequencies required for changing the UAV's orientation is not considered in 

this paper). 

 

 

7. CONTROLLING THE HEXACOPTER WITH ENGINE FAILURE 
 

As seen from (17), the optimal control of straight-line flight when all motors are operating 

normally is provided by rotating all propellers at the same frequency. Suppose one of the 

hexacopter's motors has failed. Without generalizing, it can be assumed that the failed motor is, 

for example, the 6th motor. In the absence of constraints on the rotation frequencies of the 

motors, the issue of controlling the hexacopter's movement has been addressed in [21], and it 

has been shown that control is possible along a straight-line trajectory when 03  . As 

mentioned above, a question arises: if the power of the motors is insufficient, and they cannot 

achieve the rotation frequencies given in (17), can the hexacopter be controlled in the previous 

mode using 5 motors? 

The failure of the th6  motor means that 06   must be taken when solving the system (9)-

(11). Thus, the system (9)-(11) is transformed into a system of four equations written with 

respect to five unknowns. After substituting 
2

kk   , )5,...,2,1(k  the analog of system (17) 

is written as follows: 
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 {

−𝜉2 + 𝜉3 + 2𝜉5 = 0,
2𝜉1 − 𝜉2 + 2𝜉3 − 2𝜉4 + 𝜉5 = 0,
𝜉1 − 𝜉2 + 𝜉3 − 𝜉4 + 𝜉5 = 0,
𝜉1 + 𝜉2 + 𝜉3 + 𝜉4 + 𝜉5 = 0.

 (18) 

 

To choose the most suitable solution from the set of possible solutions according to the 

essence of the problem, we can take the following optimality criterion as the analog of 

functional (13): 

 

 5,...,1,min,)( 2  


jij

ji

i  . (19) 

 

In this case, let's solve the problem with constraints applied to equations (18). If the 6th 

engine is not working, then the problem with constraints will be as follows: 

 

 

{
 
 
 
 

 
 
 
 

−𝜉2 + 𝜉3 + 2𝜉5 = 0,
2𝜉1 − 𝜉2 + 2𝜉3 − 2𝜉4 + 𝜉5 = 0,
𝜉1 − 𝜉2 + 𝜉3 − 𝜉4 + 𝜉5 = 0,
𝜉1 + 𝜉2 + 𝜉3 + 𝜉4 + 𝜉5 = 0,
𝜉1 − 𝜉0 ≤ 0,
𝜉2 − 𝜉0 ≤ 0,
𝜉3 − 𝜉0 ≤ 0,
𝜉4 − 𝜉0 ≤ 0,
𝜉5 − 𝜉0 ≤ 0.

 (20) 

 

This problem is mathematically a conditional extremum problem. Various approaches can 

be applied to solve the problem [4]. During the research, the Kuhn-Tucker method was used 

[22]. If a solution to this problem exists, then it must satisfy all the minima obtained by solving 

with each of the individual additional conditions: 

 

 

{
 
 
 
 
 

 
 
 
 
 

8𝜉1 − 2𝜉2 − 2𝜉3 − 2𝜉4 − 2𝜉5 + 𝜆2 + 𝜆3 + 𝜆4 = 0,
−4𝜉1 + 16𝜉2 − 4𝜉3 − 4𝜉4 − 4𝜉5 − 2𝜆1 − 𝜆2 − 2𝜆3 + 2𝜆4 = 0,
−2𝜉1 − 2𝜉2 + 8𝜉3 − 2𝜉4 − 2𝜉5 + 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = 0,
−2𝜉1 − 2𝜉2 − 2𝜉3 + 8𝜉4 − 2𝜉5 − 𝜆2 − 𝜆3 + 𝜆4 = 0,

−4𝜉1 − 4𝜉2 − 4𝜉3 − 4𝜉4 + 16𝜉5 + 2𝜆1 + 𝜆2 + 2𝜆3 + 2𝜆4 = 0,
−2𝜉1 − 2𝜉2 − 2𝜉3 − 2𝜉4 − 2𝜉5 − 𝜆1 − 𝜆2 − 𝜆3 + 𝜆4 = 0,

−𝜉2 + 𝜉3 + 2𝜉5 = 0,
2𝜉1 − 𝜉2 + 2𝜉3 − 2𝜉4 + 𝜉5 = 0,
𝜉1 − 𝜉2 + 𝜉3 − 𝜉4 + 𝜉5 = 0,
𝜉1 + 𝜉2 + 𝜉3 + 𝜉4 + 𝜉5 = 0,
𝜉𝑘 − 𝜉0 ≤ 0,

 (21) 

5,...,2,1k .

  

For 2k , this system of equations can be solved with each of the corresponding constraint 

conditions, and it turns out that the system is consistent. However, when the system is solved 

with the second constraint condition, it becomes apparent that there is no solution to this 
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problem. This means that when constraints are applied to the engines, it is not possible to 

compensate for the failure of one engine using the remaining five engines. 

It is clear that the same result is obtained if any of the nd2 , rd3 , or th5  engines fail. 

It should be noted that the terms related to the 1st and 5th engines are not included in the 1st 

equation of system (18) )( 532   . This is due to the placement of these engines relative 

to the 𝑜𝑥𝑦𝑧 coordinate system. For clarity, if we consider the case where the 1st engine fails 

instead of the th6  engine, by solving the resulting system in a similar manner, we again 

conclude that the hexacopter cannot be controlled with five engines under the given power 

constraints. Naturally, the results are similar when the th4  engine fails. 

Thus, this means that under the given constraints, it is not possible to control the hexacopter 

along a straight-line trajectory using only five engines. 

 

 

8. CONCLUSIONS 
 

Thus, the research showed that when one of the hexacopter's engines fails, the continuation 

of its movement along the previous trajectory can be ensured by the other engines, except for 

the engine symmetrically positioned relative to the failed one. In this case, if there are no 

technical limitations on the power of the engines, it is necessary to increase the rotation 

frequency of the propellers to continue the movement at the previous speed. 

However, if there are power limitations on the engines, the continuation of the flight along 

the trajectory can be achieved by reducing the movement speed. It was also mathematically 

substantiated that under such limitations, the power deficiency across four engines cannot be 

compensated by the fifth engine to maintain the hexacopter's flight speed along a straight 

trajectory at its previous level. 
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