
Scientific Journal of Silesian University of Technology. Series Transport
Zeszyty Naukowe Politechniki Śląskiej. Seria Transport

Volume 125 2024

p-ISSN: 0209-3324

e-ISSN: 2450-1549

DOI: https://doi.org/10.20858/sjsutst.2024.125.6

Journal homepage: http://sjsutst.polsl.pl

Article citation information:
Grzybowski, M., Młyńczak, J., Sokołowska, L., Matowicki, M. Software requirements

elaboration with decision tables. Scientific Journal of Silesian University of Technology.

Series Transport. 2024, 125, 89-99. ISSN: 0209-3324.

DOI: https://doi.org/10.20858/sjsutst.2024.125.6.

Michał GRZYBOWSKI1, Jakub MŁYŃCZAK2, Lucyna SOKOŁOWSKA3,

Michał MATOWICKI4

SOFTWARE REQUIREMENTS ELABORATION WITH

DECISION TABLES

Summary. The paper describes decision table notation as a requirements

definition technique. Modern critical systems, e.g., railway signaling systems, are

implemented with electronic technologies. The use of computers in these systems

has greatly expanded their functionality. Increase in functionality unfortunately

leads to increase in complexity, which forces the designer to follow a more

rigorous development process. The paper discusses the subject of describing

expected software behavior, i.e., software requirements specification. It presents

desired requirements features and describes how these features can be obtained by

use of decision tables. The paper also discusses decision table transformations,

which can reduce the effort to establish decision tables and facilitate their

analysis. The authors’ experiments support the use of decision tables as a mean to

increase requirements quality by providing tools for automatic decision table

processing.

1 Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street,

40-019 Katowice, Poland. Email: michal.grzybowski@polsl.pl. ORCID: https://orcid.org/0000-0002-4841-147X
2 Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street,

40-019 Katowice, Poland. Email: jakub.mlynczak@polsl.pl. ORCID: https://orcid.org/0000-0003-2947-7980
3 Railway Research Institute IK, Józefa Chłopickiego 50 Street, 04-275 Warsaw, Poland. Email:

lsokolowska@ikolej.pl. ORCID: https://orcid.org/0000-0002-0699-4312
4 Faculty of Transportation Sciences, Czech Technical University in Prague, Konviktská 20 Street, 110 00

Prague, Czech Republic. Email: michal.matowicki@cvut.cz. ORCID: https://orcid.org/0000-0002-2630-1704

http://sjsutst.polsl.pl/
mailto:adam.nowak@polsl.pl

90 M. Grzybowski, J. Młyńczak, L. Sokołowska, M. Matowicki

Keywords: decision tables, software engineering, semi-formal methods

1. INTRODUCTION

Modern safety critical systems, such as railway signaling systems, are implemented with

computer technology. Use of computers allows for greater functionality. Unfortunately,

greater functionality is occupied with greater complexity, which forces the designer to follow

a more rigorous development process in order to achieve target software reliability. More

systematic development process in safety critical systems often follow recommendations of

IEC 61508 standard or similar, domain-specific ISO 26262, DO-178C or EN 50716 [1].

These standards point out the requirements setting phase as one of the initial development

steps. In authors’ opinion this phase is critical for development because defects introduced in

this phase can be potentially carried through the rest of the development process and remain

uncovered until overall requirement testing or even validation.

Requirements in essence describe expected properties of developed software. The

properties may be of various natures, but the most basic part is the functional requirements,

which describe how software shall behave – what it shall do, how it shall react to external

stimuli. This underlines the importance of requirements in the entire development process.

Software development is always aimed at obtaining software, which implements certain

behaviors. If the behavior description is too terse or vague, then the end result may not satisfy

user expectations, even if the rest of the process is executed flawlessly.

Requirements management is a mature software engineering discipline documented in

literature, for example in [7]. Works concerned with requirements management discuss

properties of requirements themselves. There are many such qualities, but the most basic are:

 Completeness – requirements need to be complete, i.e., describe all expected properties

of the software.

 Correctness – requirements need to describe features as they should be implemented. In

particular, requirements should not be contradictory.

 Realizability – requirements need to be possible to implement. Singular requirements

are rarely not realizable, but a set of requirements possibly can be not realizable, for

example if the requirements are contradictory.

 Unequivocalness – requirements need to be interpretable only in one way; otherwise,

there is a risk of introducing defect due to requirement misinterpretation.

 Verifiability – requirements need to be specified in a way, which allows for deciding

whether a particular program implements the requirement or not.

 Traceability – in most safety-critical software development processes, it is

recommended to demonstrate how requirements have been implemented and how they

have been verified to be implemented correctly. In order to achieve this, requirements

need to be specified in a way which allows tracing them to artifacts which implement

them or support verification of correct implementation.

Requirements quality can be improved by making them more structured. One notation

designed for such use is notation of decision tables ([3, 4]).

This paper discusses use of decision tables for requirements specification and decision

tables transformations, which facilitate their design and analysis. In particular, the paper

discusses possible decision table interpretations and transformation between equivalent

decision tables written for different interpretations. Prior research discussed properties of

Software requirements elaboration with decision tables 91.

decision tables and methods for automatic derivation of computer programs from decision

tables ([6]). This work recognizes that decision tables can be interesting objects in their own

right and that there are useful algorithms, which transform decision tables into other decision

tables.

2. METHODS

2.1. Decision tables

The decision table is an easy-to-use notation for describing rule systems ([2]). The

notation is not standardized, it should be rather treated as a notation family. Notations in this

family have certain common features:

1. They are described in tabular form,

2. They describe rules of decision-making based on given criteria,

3. For brevity, they allow specifying that a particular criterion is not considered in a

particular rule.

An example decision table is presented in Tab. 1.

 Tab. 1

Decision table structure (source: original work)

Criterion 1 Criterion 2 Criterion 3 Decision 1 Decision 2

Value11 Value12 Value13 Decision11 Decision12

Value21 * * Decision21 Decision22

* * Value33 Decision31 Decision32

The rest of the paper will discuss decision tables in the form given in Tab. 1:

1. The table consists of two parts – a criterial part (rule premises) and a decisional part

(decision made based on rule premises); decision table parts are separated by double

line.

2. Criteria and decisions are specified as columns (in the decision table in Table 1, there

are three criteria and two decision components).

3. Rules are written in the table rows; each row specifies rule criteria and decision.

4. The symbol ‘*’ may be used instead of a criterion, denoting that criterion does not affect

the decision in the considered rule.

Decision table shall be interpreted as follows (interpretation I): table associates criterial

vectors (values of criterial columns) with decision vectors (values of decision columns).

Criterial vector is associated with decision vector of the rule, which criterial columns match

corresponding elements of criterial vector or which contain symbol ‘*’.

It should be noted, that in this interpretation a single criteria vector can be associated with

0, 1 or more decisions by the decision table. In practical applications one can also find another

interpretation (interpretation II), in which the criteria vector is associated with the decision

vector specified by the first rule (from the top) of the decision table, which satisfies the

condition above. In such interpretation, criteria vector can be associated only with 0 or 1

decision vectors, which reduces the effort to design an unequivocal decision table.

92 M. Grzybowski, J. Młyńczak, L. Sokołowska, M. Matowicki

According to the above description, the decision table in Table 1 associates criteria vector

(Value11, Value12, Value13) to decision vector (Decision11, Decision12). Vector (Value21,

arbitrary value, Value23) is associated with:

 Decision vectors (Decision21, Decision22) and (Decision31, Decision32) in interpretation

I,

 Decision vector (Decision21, Decision22) in interpretation II.

It should be noted that the literature discusses decision table interpretation in greater detail,

for example in [5]. In the authors’ opinion, interpretation rules given in [5] are needlessly

complex. The Interpretation rules presented in this section are clearer and yet precise enough

to allow for automated decision table manipulation.

Decision table can be analyzed depending on multiple criteria. A decision table is

complete, if it associates every possible criteria vector to some decision vector, i.e., it

specifies a decision for each criteria combination. This definition agrees with intuition –

decision table is complete if it allows one to decide in any possible situation (for each criteria

combination).

A decision table is consistent, if it associates every possible criteria vector with at most one

decision vector. Intuitively, if a consistent decision table determines a decision, then it only

determines a single decision for a particular situation. An inconsistent decision table

associates at least one criteria vector with two contradictory decision vectors.

2.2. Decision table examples

A decision table allows for the description of various decision-making processes. This

paragraph presents an example of a decision table application for the specification of business

rules and for the specification of finite automata.

Consider an application to business rules specification. Some Polish cities run programs

aimed at increasing interest in public sport facilities. The city council of City A agreed to

reduced ticket prices for public recreation facilities according to following rules:

1. For A residents, ticket prices are reduced by 50%,

2. For large family card holder, ticket prices are reduced by 30%,

3. For pensioners, ticker prices are reduced by 50%,

4. Ticket price reductions for A residents and pensioners are independent,

5. Ticket price reductions for A residents and large family card holders are independent,

6. Ticket price reductions do not compound except above situations.

The above rules are specified as a decision table in Tab. 2. It should be pointed out that the

above description contains imprecise statements (e.g., “reductions are independent”,

“reductions don’t compound”). Specification of business rules in the form of decision table

facilitates their understanding.

 Tab. 2

Example decision table – ticket price reductions (source: original work)

A resident Large family card

holder

Pensioner Ticket price reduc-

tion

Yes No No 50%

No Yes No 30%

Software requirements elaboration with decision tables 93.

No No Yes 50%

Yes No Yes 75%

Yes Yes No 65%

No No No 0%

Yes Yes Yes 75%

No Yes Yes 50%

The decision table in Tab. 2 contains 8 rows – it explicitly associates each criteria vector

with a decision. Based on a simple analysis, the decision table can be reduced to the form

given in Tab. 3.

 Tab. 3

Example decision table – ticket price reductions

(after simplification, source: original work)

A resident Large family card

holder

Pensioner Ticket price reduc-

tion

Yes No No 50%

No Yes No 30%

No * Yes 50%

Yes * Yes 75%

Yes Yes No 65%

No No No 0%

A second example presents the application of decision tables to the description of a stateful

system. This example considers signaling at a pedestrian crossing, i.e., system controlling the

road signal (RD) and pedestrian signal (PD) at the pedestrian crossing. The system behavior

can be summarized as follows:

1. In the basic state, RD displays a green light, and PD displays a red light.

2. Signal lights changes are initiated by pressing a pushbutton.

3. In order to assure traffic flow, the pushbutton press is memorized, but it does not cause

an immediate signal light change for certain time after signal change on RD to a green

light.

4. As a result of the pushbutton press, RD and PD light change sequence is initiated:

a. Yellow light on RD and red on PD

b. Red light on RD and green on PD

c. Red light on RD and flashing green on PD,

d. Red light and yellow light on RD and red on PD,

e. Green light on RD and red on PD (basic state).

The behavior of such a system is often described using finite automata, in this case with

the R (cycle request) automaton and the S (signaling sequence) automaton, presented in Fig. 1

and Fig. 2.

94 M. Grzybowski, J. Młyńczak, L. Sokołowska, M. Matowicki

Fig. 1. R (Cycle request) automaton (source: original work)

Fig. 2. S (Signaling sequence) automaton (source: original work)

Software requirements elaboration with decision tables 95.

System behavior can be described with he decision tables provided in Tab. 4 and Tab. 5.

 Tab. 4

 Example decision table – R automaton (source: original work)

R automaton state S automaton state Pressed pushbutton New R automaton

state

R1 S1 Yes R2

R1 S6 Yes R2

R1 * * R1

R2 S2 * R1

R2 * * R2

 Tab. 5

 Example decision table – S automaton (source: original work)

S automa-

ton state

R automa-

ton state

Current

light dis-

play time

elapsed

New S au-

tomaton

state

Start

counting

light dis-

play time

RD sig-

nal light

PD sig-

nal light

S1 R2 * S2 Yes Yellow Red

S1 * * S1 No Green Red

S2 * Yes S3 Yes Red Green

S2 * No S2 No Yellow Red

S3 * Yes S4 Yes Red Flashing

green

S3 * No S3 No Red Green

S4 * Yes S5 Yes Red and

yellow

Red

S4 * No S4 No Red Flashing

green

S5 * Yes S6 Yes Green Red

S5 * No S5 No Red and

yellow

Red

S6 * Yes S1 No Green Red

S6 * No S6 No Green Red

Decision tables have certain advantages for describing finite automata:

1. They describe state change criteria unequivocally, reducing the risk of misinterpretation.

There can be situations in which an automaton may perform one of many possible state

transitions. A graphical automaton model may not be precise enough to indicate which

transition shall be performed in such a case.

2. They are traceable – while a figure is useful to provide an overview of expected

behavior, it usually does not allow for systematic enumeration of transitions. In decision

tables notation this is trivial, for example, by enumerating decision table rows.

3. They allow for the clear presentation of additional information (for example, the lights

displayed by RD and PD signals in the case of the S automaton description).

96 M. Grzybowski, J. Młyńczak, L. Sokołowska, M. Matowicki

2.3. Decision table processing

The syntax and semantics of decision tables are precise enough to allow the construction of

algorithms for their analysis and transformation. This section presents a description of

selected algorithms.

2.3.1. Decision table processing

Decision tables used for requirements specification need to be complete and consistent

(if interpretation I is used). Analysis of these properties can be carried out automatically by an

algorithm.

Decision table completeness can be analyzed as follows:

1. Generate all possible criteria vectors,

2. Check, if the decision table associates each criteria vector with at least one decision.

3. If there is at least one criteria vector not associated with any decision by the decision

table, then the decision table is not complete.

Decision table consistency can be analyzed as follows:

1. For each decision table rule A:

a. Consider each decision table rule B following rule A:

i. Select criterial column,

ii. Check if either both rules have the same value in the selected criteria column or

one is ‘*’. If yes, then go to step iii, otherwise select the next rule (B),

iii. If not all criteria columns have been checked, then select next criteria column

and go to step ii,

iv. Check, if decision vectors of A and B rules are equal – if not, then the decision

table is not consistent (rules A and B can be applied to one criteria column and

have contradictory decisions) – end of algorithm,

2. If all decision table rules A have been considered and no inconsistency has been

detected, then the decision table is consistent.

Using the above algorithms, it can be checked, that S and R automaton decision tables

presented in section 2.2 are complete, but are not consistent (in interpretation I):

 In case of R automaton decision table, contradictory are rules in the first and third row –

they associate criteria vector (R1, S1, Yes) with decisions R2 and R1,

 In case of S automaton decision table, contradictory rules are in the first and second row

– they associate criteria vector (S1, R2, No) with decisions (S2, Yes, Yellow, Red) and

(S1, No, Green, Red).

2.3.2. Decision table expansion

This section presents the first transformation defined by the authors. It is the most basic

transformation, which intuitively generates an equivalent decision table (i.e., associating

criteria vectors with the same decisions), that explicitly associates each criteria vector with its

corresponding decision vector. Decision table expansion proceeds as follows:

1. Start with an empty rule list,

2. For each possible criteria vector:

Software requirements elaboration with decision tables 97.

a. Check if the considered decision table associates the criteria vector with any

decision. If no, consider the next criteria vector,

b. Add a rule associating the considered criteria vector with the corresponding decision

vector to the rule list,

3. Construct a decision table containing all rules from the rule list.

The algorithm is very simple, but the created decision tables have certain useful features –

the resulting decision tables do not contain symbol ‘*’ and are always consistent. This makes

them useful for further processing. Algorithms processing them do not need to consider the

order of rules in the decision table.

2.3.3. Redundant rule elimination

This section presents the second transformation defined by the authors. Decision tables

obtained from decision table expansion can be useful for further software processing, but they

may be too large for manual use. As can be easily seen, if a decision table has n criteria

columns and ith column can have Mi values, then the number of rules R is:

 𝑅 = ∏ 𝑀𝑖𝑖 (1)

To facilitate decision table handling, it is useful to reduce the number of decision table

rules without changing their meaning, which can be done by recreating the ‘*’ symbol in

decision table rules in a controlled fashion. The algorithm is as follows:

1. Select the first decision table rule.

2. Select the first criteria column.

3. Generate a temporary criteria pattern, which consists of the considered rule criteria

part with the selected criteria column value replaced with ‘*’.

4. Check if each criteria vector matching the generated temporary criteria pattern is

associated with the same decision as the decision part of the considered rule. If yes, go

to step 5, otherwise go to step 8.

5. (Check in step 4 successful) Replace the criteria part of the considered rule with the

temporary criteria pattern.

6. Remove from the decision table any rule subsumed (criteria part being a specialization

of the criteria part of the considered rule) by the considered rule.

7. Go to step 1.

8. (Check in step 4 unsuccessful) If the selected criteria column is not the last, then select

the next and go to step 3.

9. If the selected rule is not the last, then select the next rule and go to step 2.

10. End of the algorithm – the decision table does not contain any redundant rule.

3. RESULTS AND DISCUSSION

As noted in section 2.3.1, decision table properties can be analyzed automatically. The

authors’ designed a prototype implementation of these algorithms and the decision table

transformations specified in sections 2.3.2 and 2.3.3. The latter algorithms, proposed by the

authors, allow for the automatic generation of decision tables in interpretation I that are

equivalent to the given decision tables designed for interpretation II. The prototype

98 M. Grzybowski, J. Młyńczak, L. Sokołowska, M. Matowicki

implementation has been developed in Scheme. The implementation of all four algorithms

requires 272 lines of source code, which stems from the simplicity of the algorithms.

Nevertheless, these algorithms are useful for designing and analyzing requirements in the

form of decision tables. In authors’ opinion, decision tables together with proposed algorithms

facilitate the elaboration of requirements with the features mentioned in section 1:

1. Completeness – the decision table completeness analysis algorithm allows for automatic

checking if decision-making rules specified in the decision table cover all possible

scenarios,

2. Correctness – the decision table correctness analysis algorithm allows for automatic

checking that input decision table in interpretation I is consistent; the decision table

expansion and redundant rule elimination algorithms allow for the automatic generation

of consistent decision tables in interpretation I based on input decision tables in

interpretation II,

3. Realizability – decision table semantics assures realizability, which is additionally

facilitated by the presented algorithms for the translation of decision tables in

interpretation II into consistent decision tables in interpretation I,

4. Unequivocalness – decision table semantics provide precise interpretation rules,

5. Verifiability – consistent decision tables in interpretation I allow for direct specification

of test cases based on the decision table structure; automatic algorithms for the

translation of decision tables in interpretation II into consistent decision tables in

interpretation I allow for simple test case specification for decision tables in

interpretation II as well,

6. Traceability – decision tables are evidently traceable, for example, by tracing individual

decision table rows.

4. CONCLUSIONS AND SUMMARY

The paper discusses the use of decision tables for requirements specification and their

advantages. It also points out the possibility of automatic decision table processing and

presents a novel algorithm for translating decision tables designed for interpretation II into

consistent decision tables in interpretation I. The algorithms proposed by the authors facilitate

requirement design and analysis. The authors have developed a prototype implementation of

these algorithms, which validates the proposed methods.

In the authors’ opinion, automatic decision table processing can be further researched to

reduce the effort needed for producing other artifacts in the development process based on

decision tables. The previous section sketched the relationship between decision tables and

test cases, which warrants additional investigation. The authors suspect that similar methods

to those presented should also allow for the use of decision tables with formal methods, for

example, by automatic translation of decision table rules into logic propositions usable in

formal specifications.

References

1. EN 50716. Railway Applications - Requirements for software development. Brussels:

CENELEC.

Software requirements elaboration with decision tables 99.

2. Huysmans Johan, Karel Dejaeger, Christophe Mues, Jan Vanthienen, Bart Baesens. 2011.

„An empirical evaluation of the comprehesibility of decision table, tree and rule based

predictive models”. Decision Support Systems 51(1): 131-154.

DOI: https://doi.org/10.1016/j.dss.2010.12.003.

3. Jorgensen Paul C. 2010. Modeling Software Behavior: A Craftsman’s Approach. Boca

Raton: CRC Press. ISBN: 978-1-4200-8076-6.

4. King Peter J.H. 1967. „Decision Tables”. The Computer Journal 10(11): 135-142.

DOI: https://doi.org/10.1093/comjnl/10.2.135.

5. King Peter J.H. 1969. „The interpretation of limited entry decision table format and

relationships among conditions”. The Computer Journal 12(4): 320-326.

DOI: https://doi.org/10.1093/comjnl/12.4.320.

6. Pooch Udo W. 1974. „Translation of Decision Tables”. ACM Computing Surveys 6(2):

125-151. DOI: https://doi.org/10.1145/356628.356630.

7. Wiegers Karl, Joy Beatty. 2013. Software Requirements. Redmond: Microsoft Press.

ISBN: 978-0-7356-7966-5.

Received 08.06.2024; accepted in revised form 30.08.2024

Scientific Journal of Silesian University of Technology. Series Transport is licensed under

a Creative Commons Attribution 4.0 International License

