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AIRBORNE LASER SCANNER AS A DATA SOURCE FOR BUILDING 

SELECTED ELEMENTS OF AN INTELLIGENT DATABASE FOR 

TRANSPORTATION 
 

Summary. In this study, the main objective was to detect the road network and 

key road infrastructure elements based on airborne laser scanning data. The study 

included identification of the road network and determination of its axes using three 

independent methods, as well as detection of horizontal signs such as pedestrian 

crossings. The analysis process was based mainly on digital image processing 

methods, based solely on lidar data, without using information from other sources. 

The results of the analysis showed that the use of lidar data provides a fast and 

effective method for continuously updating information on road infrastructure and 

expanding the transportation database. This potentially opens the door to 

effectively updating relevant data in the area of transportation infrastructure. 
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1. INTRODUCTION 

 

The road network is the main tool involved in individual and public transportation, both in 

cities and areas covered with scattered buildings, but also in intercity and international sections. 

Road transport is the most common form of movement, so it is important to have an up-to-date 

data set. Knowledge of the road network is vital information, used by a wide range of users, 

who have different ways of using the available data. They can serve, among other things, as a 

basis for the introduction of the Intelligent Transportation System (ITS) [1]. An intelligent 

transportation system is an advanced system based on information and communication 

technologies that aims to optimize transportation management and operations [2]. ITS uses 

various technologies, such as vehicle-to-vehicle (V2V) communication, vehicle-to-road 

infrastructure (V2I) communication, advanced traffic control systems, and data collection and 

analysis [3].  

The goal of intelligent transportation systems is to improve the safety, traffic flow, efficiency 

and environmental performance of transportation systems. This includes applications in various 

modes of transportation, including roads, public transportation, airports, marine ports and other 

transportation areas [4]. 

For the smooth implementation of Intelligent Transportation Systems, their proper 

functioning and the sharing of results with the user, it is necessary to know the structure and 

elements of the road system in the area. Without this basic information, it is impossible to 

introduce further, more advanced information. Such data is collected and compiled in Poland 

by the General Directorate of National Roads and Highways. 

Management of the national road network is an important issue, as it enables the proper 

operation and functioning of the nationwide transportation network. The road data bank built 

supports this task. It implements the issues and provisions of the decree of the Minister of 

Infrastructure in Poland [5]. According to these documents, the General Director of National 

Roads and Highways is required to collect data related to the network of public roads, bridges, 

tunnels, and ferries. The collected information is grouped in the form of databases, in which 

information on the state of the road network is available. Data describing the transportation 

network and characterizing the phenomena that occur within the road are collected in the Road 

Data Bank system. The detailed description of the components of the transportation network, 

coupled with statistical data pertaining to usage or traffic volume, enables one to observe the 

happenings, model the requirements of users, and effectively develop the transportation 

network to meet the expectations of the traveling public and meet the demands of society. And 

for the proper functioning and effective management of the road network, it is necessary to 

regularly update the database. 

 

 

2. TRANSPORTATION NETWORK DATABASES 

 

A transportation network database is a collection of structural information and data on the 

infrastructure, roads, routes, modes of transportation and other elements that constitute an area's 

transportation system. This database is used to analyse, plan, manage and optimize traffic and 

communications in a region. It stores vital information that enables the effective operation and 

development of the transportation system. Elements of the transportation network database may 

include, among others, road information, i.e., data on road types (highways, national roads, 

local roads), road numbering, length, width, number of lanes, location of road junctions, traffic 
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circles, bridges and tunnels, information on traffic signs, traffic lights, pedestrian crossings, 

information signs and their location. 

The transportation network database is a key tool for government institutions, local 

authorities, transportation companies and others involved in planning and managing traffic and 

transportation infrastructure. With proper analysis of this data, decisions can be made to 

improve the efficiency, safety, and sustainability of the transportation system. Developing 

infrastructure: investments in expanding and upgrading roads, highways, and public 

transportation systems can increase traffic capacity and fluidity. 

Various methods and sources of information can be used to collect data for the construction 

of a road base. The most common method to collect data on the road network is field surveying. 

However, such a solution is very time-consuming and expensive, especially for extensive areas. 

With the development of technology, opportunities for faster data collection have emerged. One 

way to collect data can be through maps and geospatial information systems (GIS), such data 

information on road locations, road signs, pedestrian crossings [7]. Mobile and GPS 

technologies provide another method of spatial data collection and analysis. The use of mobile 

applications equipped with GPS technology enables the collection of information on location, 

travel routes and speed. Among researchers and professionals, there are some who focus on the 

basics of deep learning to better process and analyse the collected data [7]. Others, however, 

focus on applications that run on mobile devices and discuss a wide range of applications, from 

basic navigation to complex traffic analysis systems [8]. 

Another group of researchers focuses on the applications of these technologies in urban 

areas. They describe in detail how mobile applications and GPS sensors can be used to monitor 

and manage urban traffic, optimize public transport, and urban planning [9]. 

Other very frequently used data for the construction of a road infrastructure base is 

photogrammetric data, which, using photogrammetric methods, allows precise detection and 

analysis of the road network. Among these methods, two streams are noticeable.  

The first current uses high-resolution aerial photographs. In this group, solutions based on 

image segmentation are introduced, which allow the identification of individual road 

infrastructure elements. Segmentation is often supported by techniques for tracing the road 

structure in the images and shape analysis, allowing a more accurate representation of the road 

network. The authors of [10] describe a method using vector field learning to extract roads from 

high-resolution images. In contrast, the paper [11] reviews various road extraction techniques, 

highlighting the importance of shape analysis and image segmentation. They also use 

morphological operators [12] and thresholding techniques [13] to extract road structures from 

satellite images, enabling accurate detection and analysis of shapes and road structures in 

images. On the other hand, the paper [14] introduced solutions for updating vector road maps 

from high-resolution images, using change detection at road intersections and directed road 

tracking. All of these approaches, whether based on high-resolution aerial images or using 

morphological operators and thresholding techniques, are key to the effective management of 

road infrastructure and the monitoring of changes in the landscape. They allow databases to be 

updated on an ongoing basis and decisions to be made regarding the development and 

maintenance of the road network based on the most up-to-date and precise information available 

through modern photogrammetric and remote sensing technologies. 

A second approach to road network detection based on photogrammetric data is the use of 

airborne laser scanning data. LiDAR data allows precise mapping of terrain heights and objects 

on the ground surface, which is extremely useful for landscape change analysis and urban 

planning. These techniques also allow for point density analysis and the detection of anomalies 

in terrain structure, which can lead to the identification of new or altered roads and paths [15]. 
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Both approaches, whether based on high-resolution aerial images or using laser scanning, 

are crucial for the effective management of road infrastructure and the monitoring of changes 

in the landscape. They allow databases to be updated on an ongoing basis and decisions to be 

made regarding the development and maintenance of the road network based on the most up-

to-date and precise information available through modern photogrammetric and remote sensing 

technologies. 

 

 

3. AIRBONE LASER SCANNER AS A DATA SOURCE  

 

LiDAR is an active remote sensing system that first generates a laser pulse and then records 

the energy reflected from a given surface. Knowing the time the signal was generated and when 

it was received, as well as the properties of the generated light wave, it makes it possible to 

determine the distance to the object [16].  

The obtained information is collected and stored as a spatial point cloud. Each point, in 

addition to three coordinates (X, Y, Z), can be assigned such information as reflection echo, 

reflection intensity, scanning angle, information on R, G, B components, as well as the layer to 

which the point belongs after classification. The classification process involves dividing the 

cloud points into a dozen layers. These layers are defined by ASPRS (American Society for 

Photogrammetry and Remote Sensing), the main ones being 2 – Ground, 3 – Low Vegetation, 

4 – Medium Vegetation, 5 – High Vegetation, 6 – Building. The primary and compatible data 

exchange format is LAS. Additional information significantly expands the areas of data use 

[17]. A large part of point cloud-based road detection algorithms involve rasterizing the data 

using attributes, i.e. the height and slope of adjacent pixels [18], features of continuousness and 

homogeneity [19], and reflection intensity, based on which pixels are grouped [20]. 

The purpose of the present research was to test the effectiveness of methods using airborne 

laser scanning for the rapid detection and completion of selected road infrastructure elements, 

which are an important part of transportation databases. The research specifically focused on 

roadway centreline identification and pedestrian crossing extraction using data acquired from 

airborne laser scanning.  

 

 

4. DATA AND DETECTION OF SELECTED ELEMENTS OF ROAD 

INFRASTRUCTURE 

 

The research used a point cloud derived from airborne laser scanning, which was acquired 

as part of the ISOK project. The ISOK project is an IT system for country protection against 

extreme hazards, aimed at protecting the environment, economy, and society against disasters, 

mainly flooding. The ISOK project is co-financed by the European Regional Development 

Fund as a part of the Innovative Economy Operational Program – Priority Axis 7.  

In the present project, the study was carried out for a fragment of the area of the city of 

Kraków. The analysis covers district II – Grzegorzki in the area of Starowislna, Dietla, 

Grzegorzecka, Pokoju Avenue, Podgorska, Kotlarska, Powstania Warszawskiego Avenue and 

Grzegorzeckie Roundabout, as well as part of district XIII – Podgorze, in the area of Kotlarski 

Bridge and a fragment of Gustaw Herling – Grudzinski Street. The area with an area of about 

2.25 km2 is mainly built up with compact buildings, with facilities for various types of services 

and office space, as well as residential areas. The Vistula River flows through the study area, 

and the Krakow-Tarnow railroad line is carried out. 
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The point cloud used in the study, is of a density of 12 points/m2, with an average distance 

between points of about 0.3 m, is recorded in the PL-1992 plane rectangular coordinate system 

and the PL- RON86-NH altitude system. The data is classified according to ASPRS standards 

and saved in files in LAS format. Nine files described by symbols were used in the project: M-

34-64-D-d-2-3-1-2, M-34-64-D-d-2-3-1-4, M-34-64-D-d-2-3-2-1, M-34-64-D-d-2-3-2-2, M-

34-64-D-d-2-3-2-3, M-34-64-D-d-2-3-2-4, M-34-64-D-d-2-3-3-2, M-34-64-D-d-2-3-4-1, M-

34-64-D-d-2-3-4-2 (Fig. 1). 

 

  
 

Fig. 1. The study area on the background of the orthophoto with  

a split into the ranges of each file 

 

4.1. Detection of road network 

 

In order to build and develop the transportation network and ways of efficient management 

and management, there are automatic and semi-automatic methods of road detection. These 

methods are mainly based on the use of photogrammetric and laser data. In general, road 

network detection methods are based on the construction of point cloud rasters. The rasters can 

be built based on elevation, echo, or reflection intensity. In the next steps, the extraction of 

information on linear elements (roads) is possible through the use of digital image processing 

methods [21]. 

The first stage of the present study involved the extraction of the road network. For this 

purpose, the point cloud was classified into two layers: road and non-road. First, a raster with a 

mesh equal to 0.5m was constructed using single reflection intensity. A pseudo raster was 

created using inverse distance interpolation. The use of these types of points allows extracting 

from the entire set of points reflected from “hard” surfaces (road), which completely return the 

signal and do not allow registration of subsequent echoes. Wanting to perform classifications 

using reflection intensity, it is necessary to know the ranges of pixel brightness values for each 

class. For this purpose, a test field consisting of 115 pixels was made, which makes it possible 

to determine the limits. The points included in the samples represent the surface of wide and 

multi-lane main roads and local roads. A breakdown by type of pavement was not performed, 

due to the small variety of them in the study area and the difficulty of manually separating them. 

The distribution of the selected points along with the intensity image is shown in Figure 2. 
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Intensity values from the raster generated earlier were assigned to the indicated points. Based 

on these, limit values corresponding to roads were calculated. 

 

 
Fig. 2. Distribution of points representing roads on the intensity raster 

 

The classification of points, which involves separating road areas, was done using the 

maximum likelihood method. In this method, one of the conditions is that the intensity values 

of the points representing the roadway assume a Gaussian normal distribution, which makes it 

possible to use the likelihood function described by the following formula (1): 

 

                                                       𝐿(𝑋) =
1

(𝜎√2𝜋)
exp(

−(𝑋−𝜇)2

2𝜎2
)                                       (1) 

 

where:  

X - intensity values assigned to a raster cell, 

L(X) - the probability of X belonging to a specified class, 

μ - the average intensity value for the tested sample of points, 

σ - standard deviation. 

 

In order to implement the above equation, the mean value of the points, standard deviation 

and threshold values were calculated. The maximum value of L(X) is taken when X is equal to 

the size of the sample mean, while the minimum threshold is reached for the smallest value of 

X from the test sample [21]. The calculated values are shown in Table 1, where the intensity 

raster was recalculated based on them (Fig. 3a). 

Analysing Figure 3a above, the outline of the road network is noticeable, but pixels 

representing other land cover elements have also been classified as roads. This has to do with 

signal reflection values, which can be similar for different types of surfaces. The use of intensity 

alone in the classification process is not sufficient to correctly detect the road network. 

Therefore, further processing was performed to narrow down the areas representing roads. First, 

pixels that represent land cover elements were eliminated. These elements are mainly areas 

located in the regions of buildings, where the intensity value of roofs was close to the limits of 

the selected intensity samples. For this purpose, a normalized Digital Surface Model (Digital 
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Surface Model – Digital Terrain Model) was generated from the points of the last reflection 

with a pixel size of 0.5 m. Using the nDSM, which contains height information, it is possible 

to eliminate those pixels whose value is greater than 0 (roads lie on the ground, so their height 

on the nDSM = 0m). The resulting raster is shown in Figure 7b. (Fig. 3b).  

 

 Tab. 1 

Intensity values used in the road classification process 

 

Parameter Value 

average (μ) 20,6 

standard deviation (σ) 6,0 

L(X) min (for X = 11) 0,018 

L(X) max (for X = 20,6) 0,067 

 

a)                                                                           b) 

Fig. 3. Binary images: black colour - detected areas (road network), white colour - 

surrounding areas a) obtained by performing the classification process, b) obtained by raster 

algebra using nDSM (normalized Digital Surface Model) 

 

The obtained raster (Fig. 3b) clearly shows the road network. By introducing the height 

condition, it was possible to eliminate areas that represent the river, buildings and other 

elements that are not roads. These treatments significantly improved the detection of elements 

of the transportation network, but the image still has a lot of noise, single pixels that do not 

belong to the detected group. Furthermore, there are noticeable errors in the form of parking 

lots or other objects with flat surfaces, whose intensity is within the limits accepted for roads. 

Examples of errors are shown in the figure below (Fig. 4). 

The next step was to use a median filter, which removed the noise in the image. Next, an 

opening operator was applied to the image. This transformation combines an erosion operation 

with a subsequent dilation based on the same structural element. The next transformation is a 

combination of functions related to the size of the objects, which is the extraction and 

subsequent removal of objects with a certain number of pixels. The raster was also subjected to 
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transformations related to filling in “holes” in the road, created at pedestrian crossings or 

standing cars. A closure operator was used to fill “holes” occurring on detected linear elements 

[22]. All the processing of the digital image mentioned above significantly increased its 

readability (Fig. 5). 

 

 
 

Fig. 4. Examples of incorrectly detected surface elements (playfields, parking) 

 

 
 

Fig. 5. The resulting raster with the detected road network 

 

To determine the exact course of the road network, the axes of the road network were 

detected. This process was performed by three independent methods. Two of them are related 

to the use of morphological transformations of the binary image, and the third solution is 

automatic vectorization. 

The first morphological transformation is thinning, which reduces detected objects in the 

image until the element reaches a specific width, such as a single pixel. Filled objects are 

reduced to curves of a specific thickness, while when an object has gaps, a ring is created. The 

result obtained is shown in Figure 6a. It is noticeable that there are short sections that are not 

actually roadway axes.   

The second method by which road axes were detected is skeletonization. This function is 

also designed to obtain a line of one pixel thickness from the elements in the image. In the 

process, a centreline with a preserved topology is extracted. In addition, there is an option to 
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enter the minimum value of the segment, which allows removing from the image, short and at 

the same time incorrect fragments. The result is presented in Figure 6b. 

The third solution tested is the process of automatic vectorization. This tool is mainly used 

to automatically determine the position of plot boundaries or contours from a scanned map. 

During automatic vectorization, a line smoothing parameter is defined. The results are vectors 

that have been rasterized so that a direct comparison with other methods is possible (Fig. 6c). 

 

 
 

Fig. 6. The resulting raster with the detected road network – detection of road axes, by various 

methods: a) thinning, b) skeletonization, c) automatic vectorization 

 

4.2. Extracting pedestrian crossings 

 

Indicating the location of pedestrian crossings can be vital information for both pedestrians 

and drivers, but also for traffic managers. Such information may also be helpful in the context 

of special groups of pedestrians, which include children [23] or the disabled [24]. Collecting 

this type of data manually can be time-consuming. Therefore, an attempt was made to detect 

pedestrian crossings by a semi-automatic method using lidar data. The intensity of the 

reflections, as well as the RGB values that were assigned to the cloud points, were used to detect 

these elements. Horizontal signs, of their high importance in transportation and the need to 

make them highly visible in various conditions, are painted with reflective paint, which should 

also make them much easier to detect in rasters. The pixels representing pedestrian crossings 

painted on the asphalt stand out significantly from their surroundings, and the high contrast of 

the signs in relation to the pavement provides an opportunity to use such information in the 

processing of intensity images. 
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The first stage, of detecting pedestrian crossings, was performed analogously to road 

detection. The generated intensity image indicated 90 points, which were then assigned 

intensity values from the raster. From these, the mean value, standard deviation and limits were 

calculated according to formula 1. The range of intensities indicated for horizontal markings is 

too wide and includes pixels with different types of use. Therefore, an additional step that was 

introduced to improve the quality of detection is to act on the rasters obtained from the R, G 

and B channels. After generating the raster from the coloured points of the last reflection, the 

values from each channel at the test points were extracted. Based on the collected values, mean 

values, standard deviations and then limits were calculated, which were determined at distances 

of one standard deviation (σ) from the mean values. The calculated elements are summarized 

in Table 2. 

 

 Tab. 2 

Values of parameters based on which pedestrian crossings were detected 

 

Parameter 
Intensity 

value 

Value - R 

channel 

Value – G 

channel 

Value - B 

channel 

Average (μ) 86,9 47156,5 46670,0 48853,5 

Standard 

deviation (σ) 
23,1 10229,0 9690,0 8509,3 

L(X) min (for 

X = 42) 
0,003 - - - 

L(X) max (for 

X = 86,9) 
0,017 - - - 

Minimal - 36927,5 36980,0 40344,2 

Maximum - 57385,5 56360,0 57362,8 

 

After calculating the limit values, the common part was extracted from the areas determined 

in each channel (R, G, B) and from the image obtained after classification using the intensity 

parameter. The detected elements are not only pedestrian crossings, so a mask was applied in 

the form of a raster obtained in Section 4.1 presenting the detected road network. The result of 

the combined rasters is presented in Figure 7. 

In this approach, in addition to the detected pedestrian crossings, additional elements painted 

on the roadway are extracted. In particular, the lines separating individual roadway lanes are 

well represented. To reduce the number of elements that do not represent the desired objects, 

image transformations were applied. Combinations of operations related to counting and 

removing groups of pixels of a certain number, morphological closure with a defined structural 

element, as well as basic operations, i.e. image difference, were used. When performing 

transformations, it was noted that the separation of pedestrian crossings from erroneous 

elements is not fully possible, despite the selection of various parameters. However, the 

achieved result makes it possible to easily perform the identification of the road horizontal 

marking elements in question (Figure 8). 
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Fig. 7. The image resulting from the combination of the classification result and the mask 

formed from the detected roads – an enlarged fragment (elements detected are black) 

 

 
 

Fig. 8. Resulting image of detected pedestrian crossings – enlarged section for the area 

marked in Figure 7 (Elements detected are black) 

 

 

5. ANALYSIS AND ASSESSMENT OF THE ACHIEVED RESULTS 

 

In order to practically implement new methods or use existing solutions for object detection, 

it is crucial to accurately estimate the precision and completeness of the detected elements. 

Therefore, this chapter provides a detailed evaluation of some of the results obtained. 

 

5.1. Completeness of detection of specific elements 

 

The completeness of the detected elements of the road network is crucial in evaluating the 

results. Too much generalization is associated with a reduction in the set of detected elements, 

at the same time, the “uncleared” data has too much incorrect information. Therefore, it is 

necessary to optimize the methods used accordingly. Detection of a road network from airborne 
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laser scanning data using only intensity information does not give satisfactory results. 

Therefore, additional attributes, i.e. height and RGB, were used for the study. The analyses 

showed that the completeness of road detection is largely related to the width of the street. For 

wide and multi-lane traffic lines, the proposed algorithm performs better, as the object is 

mapped by a larger number of pixels. Small streets running through residential neighbourhoods 

or access roads were not included in the detected network in several cases. In addition, within 

residential roads, where cars park on the side of the road, the width of the road is incorrectly 

determined. The discontinuity of the band of the detected road also appeared in places where 

the road runs under a bridge or overpass. On the resulting raster, there are also areas assigned 

to roads that are not actually roads. These are elements that have similarity in intensity, but are 

often large flat areas that can be eliminated by applying appropriate image transformations and 

filtering, e.g. using shape, surface. The transport network has been largely correctly extracted. 

Figure 9 shows where there are deficiencies of only narrow streets in residential areas. In 

contrast, Figure 10 draws in sections of undetected streets. These sections account for about 

21% of all streets located in the area. A portion of the undetected roads are not covered with 

asphalt pavement, which was included in the analyses. 

Another aspect of the performance evaluation is to check the completeness of detection of 

pedestrian crossings. Some of them may have been filtered out due to insufficient size or 

number of recorded lines, which may have been caused by cars left within the sign limits or 

problems in their detection related to physical wear and tear of the sign painted on the pavement. 

The number of detected crossings is also influenced by the shape and detail of the road network 

defined at an earlier stage, which acts as a mask limiting the areas of the extracted elements. 

Where roads have gaps, the error carries over to subsequent passages. The resulting map derived 

from the horizontal sign detection stage includes elements of other signs, such as fragments of 

lines separating adjacent roadway lanes. Therefore, only whether crosswalks were missed was 

considered in assessing completeness and correctness. Undetected pedestrian crossings are 

marked in Figure 9. Identification and inspection were performed manually using an up-to-date 

orthophoto. The automatic detection of pedestrian crossings is satisfactory, as in an area of more 

than 2 km2, only a dozen is missing. About 75% of the horizontal signs (pedestrian crosses) 

present were correctly detected. 

 

5.2. Accuracy of road axis detection 

 

The completeness of the detected data is the basis for evaluating the accuracy of road axis 

detection.  In this study, three different methods were used to generate axes. The purpose of this 

subsection is to determine how accurately the axes are represented and which of the methods 

used is the most advantageous. 

A visual analysis was performed first. The image generated by the automatic vectorization 

process has the smoothest lines, but the joints of individual edges, e.g. intended to represent an 

intersection, are not smoothed and do not transition smoothly from one to another. Thus, the 

image does not reflect the actual shape of the axis and looks unnatural. The use of a smoothing 

filter gives more satisfactory results visually. The edges of the streets are clear, and the corners 

and intersection areas smoothly reproduce the transition between lines. The downside of the 

image derived from the discussed function is the occurrence of “branches.” These are small 

lines, misrepresenting the axis of the road, but significantly disrupting the visual perception and 

evaluation of the method. Similar anomalies are formed using skeletonization, but in this case, 

already at the stage of determining its parameters, it is possible to eliminate such sections when 

adopting a length criterion for them. 
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Fig. 9. Final rasters overlaid on the orthophoto with examples of areas where the road was not 

detected (red, enlarged sections) and pedestrian crossings that were not detected (yellow dots) 
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Fig. 10. Detected roads and drawn in segments representing missing roads (red) 

 

Such a solution combined with the shape of the line similar to that created from the 

application of the smoothing filter gives a certain advantage. From this, it can be judged that, 

performing the evaluation from a visual point of view, the most favourable results were 

achieved using the skeletonization method. When performing visual analysis of the detected 

axes, attention should be paid to the traffic circle, which is located within the area. It is a heavy 

element to extract axes due to its shape. An additional complication is the streetcar tracks 

running through the centre and crossing each other, which were also detected. Axis detection in 

this area was not performed correctly. Each of the tested algorithms showed problems with 

drawing the axes in this area, failing to define which elements should be connected to each 

other. The results produced using the subsequent functions are shown in Figure 11, but they 

could have been used for subsequent analyses, some refinements and transformations in the 

methods would have to be made, other tools would have to be sought, or the problematic section 

would have to be worked out manually. 

To check the accuracy of road axis detection, reference data was used. A road network 

manually vectorized from an orthophoto was used as reference data. A database of 82 points 

located on road axes was constructed. These points served as reference points. The points were 

distributed on both main and side roads, on straight sections and on curves. In the next step, the 

distances from each identified reference point to the detected road axis were determined for 
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each method separately. Based on the collected length values, the average values for each 

method and their mean-square errors were calculated (Tab. 3). 

 

 
 

Fig. 11. Drawn axes road in the traffic circle area: orthophotos (a), application of smoothing 

(b), skeletonization (c), automatic vectorization (d) 

 

Tab. 3 

Summary of the calculated distance values for the various methods of extracting the road axes 

 

Methods: 
Thinning Skeletonization 

Automatic 

vectorization 

82 points 71 points 82 points 71 points 82 points  71 points 

Average 

reference 

point-axis 

distance 

[m] 

1,75 0,86 1,84 0,92 2,42 1,43 

MSE [m2] 7,52 1,17 8,33 1,38 12,48 4,79 

RMSE [m] 2,74 1,08 2,89 1,17 3,53 2,19 
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Analysing the results obtained from the conducted tests, it is noticeable that the average 

distance between the reference points and the generated axis achieves the best results when 

using the thinning technique. This method was favourably evaluated, considering the visual 

aspects and the shape of the detected axes. However, its significant limitation is the generation 

of “branches” that limit correct identification and introduce erroneous elements. Such an 

imperfection is not present in the result using the skeletonization method, which positively 

influences the final perception of this method despite obtaining weaker RMSE values. The 

lowest accuracy was obtained in the automatic vectorization method. It is worth noting that all 

82 points were used for the initial analysis. It was noted that for some distances significantly 

differ in the three methods studied. Particularly, this situation was observed in the case of streets 

consisting of two carriageways, where there is a green belt or a tramway track between them. 

After digital image processing operations, the area between the carriageways was also identified 

as a road, resulting in the generation of a single axis running through the centre of the dividing 

lane, with the reference point placed in the centre of one of the carriageways. Similar situations 

occurred when there was a bicycle path or plaza in close proximity to the edge of the road. 

These objects were partially identified as part of the road, resulting in a shift of the generated 

road axis and significant differences in position. Another case that distorts the results is a traffic 

circle located within the study area. In the case of this element, the analysis for the algorithms 

became difficult because streetcar tracks crossed in the middle of the traffic circle, which proved 

to be unmovable. These elements introduced additional disturbances, which caused the 

functions used for axis extraction to not work properly. In order to eliminate the impact of such 

cases on the accuracy assessment, in the example studied some points were excluded from the 

analysis, leaving 71 points. As a result, two columns of points are summarized in Table 3 for 

comparison. 

 

 

6. CONCLUSION 

 

The aim of this study was to detect selected elements of the road infrastructure using, 

exclusively, airborne laser scanning data. The first element focused on was the shape of the road 

network. This was based on the point intensity attribute, and detection was performed on the 

generated rasters. One of the key issues in image classification is identifying the right number 

and location of points with the right intensity. In the area analysed, most of the road surface was 

asphalt, but despite the same material, the range of reflection intensities was quite wide. The 

intensity is influenced not only by the type and colour of the pavement, but also by the angle of 

incidence of the pulse. So the input set of points with a certain intensity is wide, resulting in the 

detection of a much larger number of objects on the ground surface. But using appropriate 

digital image processing, redundant elements can be automatically eliminated. However, the 

algorithms used did not cope very well with the automatic detection of roundabouts. In this 

case, manual correction is necessary. Narrow roads can also be problematic, especially on 

housing estates, where their detection is also adversely affected by shadow. Despite a few 

undetected elements, the final results can be described as satisfactory. The main roads were 

detected correctly, and it must be borne in mind that only lidar data was used.  

The detection of pedestrian crossings is the next stage of the study. This stage was based on 

indicating test points and then calculating boundary quantities from the intensity parameter 

values. Identifying the points proved to be a relatively difficult task so that they represented the 

entire intensity range for all crossings. Horizontal signs painted with specialized paint have a 

characteristic level of pulse reflection, but not all stripes are renewed frequently enough. 
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The worn-out paint looks slightly different on the intensity raster, and the range that needs to 

be extracted increases significantly, making the task of subsequent filtering more difficult. Even 

despite the integration of the classification results from the intensity image and the individual 

RGB channels, as well as the overlay of a mask related to the road network, many elements 

were incorrectly indicated. The mask itself, created in the previous project stage, can result in 

transitions located on roads not previously detected being removed from the image. A large 

proportion of the redundant areas included other horizontal signs painted on the street surface, 

i.e. lines separating individual carriageway lanes. The difficulty in image processing is to use 

filters that allow pedestrian crossings to remain while removing unnecessary objects. It is a very 

time-consuming process to choose the right function parameters to get the desired result. 

However, despite these difficulties, the end result was satisfactory and the extracted data 

(pedestrian crossings) can be used to complete the database. 

LiDAR provides a broad set of data which, once the appropriate attributes have been selected 

and transformed to suit the type of object, offers the possibility to gather such information, 

which both on its own and in combination with others collected in the database, can provide 

unique knowledge that is crucial in the intelligent management of the road network, as well as 

the entire city. Observing the appearance of the developed point cloud derived from airborne 

laser scanning, it should be noted that its density may not be sufficient to detect point features 

such as vertical road signs or traffic lights. Such objects are too small, to LiDAR ensure 

respectively large coverage of their points, which would give the chance to their distinction. 

However, the accumulation of such data may be possible after the integration of e.g. with the 

scanning of the terrestrial or mobile scanning, or lidar acquired from UAV.  The lidar data offers 

a range of possibilities for the detection of road infrastructure elements, which can significantly 

facilitate activities related to the creation and expansion of the database used for transport. 

Comparing the results of the research carried out with the latest developments in the 

detection of road infrastructure using LiDAR, several important aspects can be noted. 

Nowadays, methods using deep neural networks [25] and hybrid techniques [26], which 

improve the precision of detection and automation, reducing the need for manual correction, 

are increasingly being applied. These new approaches have the advantage of being better able 

to deal with pavement heterogeneity and shading, which was problematic in this study. In 

addition, the latest technologies using high-resolution remote sensing images for detection 

improve classification accuracy, enabling better differentiation of pavement materials [27]. 

Contemporary research indicates that the use of advanced machine learning and artificial 

intelligence algorithms can significantly speed up the data analysis process, while eliminating 

many of the errors associated with manual interpretation. Nevertheless, some challenges, such 

as the detection of complex structures (e.g. roundabouts) and narrow roads, still require further 

algorithm improvements. Detection of point infrastructure elements such as road signs also 

remains problematic, which can be improved by integrating data with terrestrial or mobile laser 

scanning. Additionally, data from sources such as drones [28] can provide more detailed 

information that is difficult to obtain with traditional airborne laser scanning. Overall, the latest 

technologies offer promising solutions that can significantly increase the efficiency and 

accuracy of future research in this area. The integration of different scanning techniques and 

advanced data processing could be the key to fully automating and the optimization of road 

infrastructure management processes.  
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