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MODELLING ROUNDABOUT ENTRY CAPACITY FOR MIXED 

TRAFFIC FLOW USING ANN: A CASE STUDY IN INDIA 
 

Summary. Roundabouts, as an unsignalized intersection, have an effective 

preventative measure designed to control straight-line crashes. Efficient traffic flow 

in cities depends upon appropriate capacity estimation of roundabouts. This study 

attempts to develop models for roundabout entry capacity by applying Artificial 

Neural Network (ANN) analysis for mixed traffic flow conditions. Data was 

gathered from 27 roundabouts spread across India. The influence area for gap 

acceptance (INAGA) concept was used as a graphical method to identify critical 

gap (Tc) of entry flow at roundabouts. This study indicated that the Bayesian 

Regularisation Neural Network (BRNN) based model has the best R2 and RMSE 

of 0.97 and 167.8. The connection weight approach and Garson algorithm evaluate 

the significance of each explanatory variable and identify follow-up time (Tf) as a 

critical parameter with values of 11.10 and 21.15%, respectively. 
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1. INTRODUCTION 

 

Roundabout is an efficient traffic control measure in the form of safety and operational 

aspects. Circular intersections substantially mitigate head-on collisions, notably right-angle 

accidents, as well as facilitate the easy movement of more traffic with reduced queuing time. 

In comparison to signalized junctions, it has fewer conflict points. At signalized intersections, 

32 potential sources of conflict are identified, but at roundabouts, the number falls to 8. As a 

result, roundabouts are regarded to be vital infrastructure in any country's urban traffic system. 

The roundabout capacity is a key statistic for evaluating operational performance, delay, and 

queue length. 

The upholding of driver conduct, specifically lane discipline, is inadequately managed in 

conditions of heterogeneous traffic. In addition, the dimensions, transmission capacities of 

vehicles, and geometrical features of intersections in developing countries are very different 

from those of vehicles in affluent nations. Drivers get aggressive while attempting to manoeuvre 

around one another in congested areas. In such conditions, vehicle speeds vary as a result of the 

inherent differences between vehicles. At roundabouts, significant contributing vehicles, such 

as small-sized cars (SC) and two-wheelers (2W), consistently seek to merge into 

the mainstream flow of traffic. This results in an extremely chaotic traffic situation due to the 

inconsistent spacing between vehicles. HCM (2010) presents a comprehensive methodology 

for estimating the entrance capacity of roundabouts, however, it fails to account for people's 

driving behaviour under local conditions. Hence, emphasis has been given to develop the 

capacity models for roundabouts under constrained conditions.  

Essential methodologies, such as empirical models, gap acceptance models, and microscopic 

simulation modelling, serve as a basis for existing roundabout capacity models. Empirical 

models are often solved by applying regression analysis, with capacity serving as the dependent 

variable and other factors, such as prevailing flow and site geometry, contributing as 

explanatory variables [1]. It has been identified that the entry capacity varies negatively 

exponentially about the opposing flow and that as the opposing flow increases, the entry 

capacity decreases and vice versa [2], [3]. The capacity model on the concept of gap acceptance 

theory reflects the decision of drivers on variables like critical gap and follow-up time. For 

drivers in the minor stream, the minimum acceptable duration before merging into the major 

stream is termed as the ‘critical gap’ while the ‘follow-up time’ refers to the time difference 

between vehicles in a queue during congested traffic conditions [4]. In contrast, microscopic 

simulation models are influenced by the interactions and motions of vehicles within a simulated 

network. Three primary terms can be used to describe the actions of vehicles on the route: car-

following, lane-changing, and the gap acceptance concept, which includes critical gap and 

follow-up time. Various microscopic simulation models have been developed for parametric 

findings, with the flows and turns being controlled [5], [6]. Artificial neural networks (ANNs) 

are frequently used by professionals in academia, as they can model complicated and nonlinear 

data sets accurately and with the least amount of error [7]. The capacity prediction of 

roundabouts through ANN outperforms the gap acceptance and empirical models, further it 

encourages employing machine learning techniques for a proactive operational plan for 

roundabouts [8], [9]. Accordingly, an ANN-based entrance capacity model for Indian urban 

cities has been developed. 

Data was obtained from 27 roundabouts in India during peak traffic hours. The graphical 

method of influence area, INAGA, is used to predict driver response factors such as critical gap 

( 𝑇𝑐) and follow-up time ( 𝑇𝑓) in order to provide capacity models for roundabouts. 
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The effectiveness of the ANN models was evaluated using the connection weight method and 

Garson's approach. 

The paper is structured into four sections, with section 1 providing an overview of the 

context of the study and a review of the relevant literature. The subsequent section discusses 

study sites and data-collecting procedures. The methodology and analysis of the ANN capacity 

models are comprehensively described in Section 3. The final section of the paper provides the 

conclusion of this study. It also addresses the limitations of the study and suggests avenues for 

future research.  

 

 

2. SELECTION OF STUDY SITES AND DATA COLLECTION PROCEDURE  
 

A total of 27 roundabouts were selected for data collection to develop capacity models. The 

twelve cities depicted in Fig. 1 in the four corners of India all consist of roundabouts. The 

roundabouts were selected following the specified criteria. Roundabouts, which have 4 

approach legs, tend to be placed in commercial, industrial, and residential areas. The 

roundabouts tend to be at grade intersections and are unsignalized. Further, the influence of 

cyclists and pedestrians is modest at these roundabouts. The measured geometric specifications 

of roundabouts are presented in Appendix 1. 

 

 
Fig. 1. Location of Cities on India Map 

 

The collection of traffic flow data is from high-rise buildings in close proximity to the 

roundabouts. This approach was taken to ensure the acquisition of comprehensive and relevant 

data sets. The videography method utilized in this study is straightforward and economical. It 

is also convenient to use a post-processing method for data extraction. Videos capturing the 

morning and evening traffic flow peaks under clear weather conditions were utilized to account 

for the significant contribution of both the critical gap ( 𝑇𝑐) and follow-up time ( 𝑇𝑓) to the gap 
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acceptance capacity model.  Moreover, half an hour of queuing time on the approach legs was 

seen over the course of the two hours of observation. The gap variables were then extracted 

from the recorded videos. The variables that contributed to the capacity model for roundabouts, 

including flow, geometrics, and gap variables, were utilized in regression analysis and ANN 

modelling, as detailed in Tab. 1. During low-traffic volume times, a measuring tape was used 

to take measurements of geometric variables. The ‘weaving width’ refers to the road width that 

runs around the central island and is utilized by vehicles to navigate in a clockwise direction. 

Both single and multi-lane variants of the road are possible. The total distance of a segment of 

a rotary through which weaving takes place is referred to as the ‘weaving length’.  Google Earth 

software measurements were employed to validate the field-measured inventory data for streets. 

The methodologies and analysis approach are detailed in the following section. 

 

 Tab. 1 

Analysis of contributing variables for this study 

 

Variables Units Minimum Maximum Mean 
Standard 

deviation 

Observed entry capacity ( 𝑄𝑒)   PCU/h 251 3346 1712.5 772.75 

Circulating flow ( 𝑞𝑐)   PCU/h 220 3778 1051.28 711.42 

Weaving length ( 𝑊𝑙)   m 29.76 59.52 43.39 6.09 

Weaving width ( 𝑊𝑤)   m 9.1 19.04 16.80 5.34 

Entry width ( 𝐸𝑤)   m 6 21.22 14.17 3.87 

Diameter of central island ( D ) m 12.66 62.32 42.62 11.77 

Critical gap ( 𝑇𝑐)   seconds 0.68 2.66 1.73 0.58 

Follow-up time ( 𝑇𝑓)   seconds 0.88 2.34 1.78 0.52 

 

 

3. METHODS AND ANALYSIS 

 

This section discusses extensively the Gap acceptance variable and the existing models' 

viability. Furthermore, the ANN model is being developed for the prediction of roundabout 

entry capacity. Additionally, the entry capacity model's suitability and the relative significance 

of the input variables are specified. 

 

3.1. Gap Acceptance Variables 

 

For capacity models of roundabouts, significant factors that are considered to describe driver 

conduct under real-world traffic conditions include critical gap and follow-up time. An 

inadequate approach for obtaining critical gap and follow-up time values results in partial 

capacity estimation of a roundabout. In order to determine the critical gap, both the newly 

accepted equilibrium probability method and the widely utilized Raff method considered 

homogeneous traffic flow and consistent driving conduct. Nevertheless, with a zero rejection 

of gap data, these approaches fail to produce reliable results. Therefore, it is presumed that this 

is a significant issue in mixed traffic conditions. In mixed traffic situations, zero gaps are 

typically rejected for congested and normal traffic flow. Subsequently, to surmount these 

shortcomings and variations, the INAGA method, which was recently devised, is implemented 

to produce dependable outcomes [10]. The INAGA technique can calculate the critical gap 

without having a specific distribution function as an assumption. As a result, the INAGA 
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method is a graphical method of assumption; upon observing the mainstream where 

the merging of entry and circulating flows is most, a trapezoidal-shaped influencing area may 

be meticulously assumed. 

 

3.2. Existing Model Evaluation 

 

The Girabase formula (France), Brilon-Wu formula (Germany), and HCM 2010 (USA) 

models are used for a new set of roundabouts to evaluate their ability to anticipate traffic flow. 

In a study, the feasibility of using explanatory variables to establish a relationship between 

capacity, other geometric functions, and gap acceptance has been analysed [11]. As illustrated 

in Fig. 2, the aforementioned techniques generate a relation between the data obtained from 

field observations and the predicted capacity. 

 

       
(a)                                           (b)                                             (c)               

Fig. 2. Prediction of capacity by using international capacity models 

 

Figures 2(b) and (c) show that, in comparison to capacities observed under field conditions, 

the predicted entry capacities of the Brilon-Wu formula (Germany) and the HCM 2010 

approaches are, respectively, higher, and lower. This shift in capacity estimates can be 

attributed to a couple of factors. The first cause is the fact that metropolitan Indian streets see a 

wide range of vehicle types. The second issue is likely the vastly different driving conduct of 

Indian drivers compared to those of drivers in Western countries. In mixed traffic flow, vehicles 

with varied manoeuvrability coexist. The prevalence of two-wheelers over cars of all kinds 

predominates in Indian traffic. A breach of the principle of priority happens whenever two-

wheelers (2W) in the approaching stream emphatically establish a gap in the route of the 

primary traffic flow. Homogeneous traffic, on the other hand, involves vehicles moving in a 

streamlined pattern whilst consistently maintaining some distance. When applied to data sets 

containing mixed traffic flows, models that were fitted under homogeneous traffic conditions 

overestimate entry capacity under high circulating flows, resulting in inaccurate model fitting. 

Measurements of driver behaviour metrics, such as critical gap and follow-up time, under actual 

conditions, might help reduce discrepancies in capacity projections. Furthermore, the 

significance of geometric variables in capacity prediction analysis is acknowledged. By 

integrating geometric and gap acceptance variables as explanatory variables in the context of 

mixed traffic flow conditions, gap acceptance capacity models are subsequently devised. 

However, the capacity values of the proposed Bayesian Regularisation Neural Network 

(BRNN) model and the Girabase formula in Fig. 2(a) are comparable. 
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3.3. Artificial Neural Network (ANN) Modelling 

 

Modern data analysis techniques, such as ANN modelling, offer an alternative to the 

traditional statistical regression method. A linear model aims to establish a linear relationship 

between independent and dependent variables. However, in ANN modelling, the coefficient, 

and intercept variables are associated with neural network weights and biases. The hidden layers 

in the neural network are accomplished to evaluate the critical relationships, such as the 

nonlinear relationship between dependent and independent variables. For estimating 

roundabout capacity, the authors discovered that ANN modelling outperformed regression 

models [1]. In regression models, there is a probability of the occurrence of constraints between 

explanatory variables and capacity. However, ANN modelling can establish an appropriate 

relationship between explanatory variables and capacity even if there is a constraint relationship 

between explanatory variables and capacity. 

The current study employs two distinct training algorithms, namely the Bayesian 

Regularisation Neural Network (BRNN) and Levenberg-Marquardt Neural Network (LMNN)  

to develop the ANN models. As illustrated in Fig. 3, feed-forward perceptron with back 

propagation training algorithm (FFBP) type of ANN with hyperbolic tangent activation 

functions is developed using explanatory variables like weaving length (𝑊𝑙), critical gap ( 𝑇𝑐), 

weaving width ( 𝑊𝑤), entry width( 𝐸𝑤), circulating flow ( 𝑞𝑐), follow up gap ( 𝑇𝑓), and central 

island diameter  (𝐷) and dependent variables like entry capacity ( 𝑄𝑒). Nodes of feed-forward 

type ANN are organised in layers, with information flowing forward from input layers to output 

layers through hidden layers. The backpropagation algorithm is employed to train the hidden 

units to produce the intended output in situations where the output is unknown. In this 

technique, the error observed in the output layer is back propagated to the hidden layers 

according to the connecting weights. The weights are adjusted by the delta rule. The same 

approach is repeated for each training data sample. One complete cycle through the training 

data set is termed an epoch. The number of times that the set of training data will be entered 

into the network is termed as the number of epochs. 

 

 
Fig. 3. Neural network diagram with 7 explanatory variables 
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A total of 110 data points were used to forecast the ANN capacity models. The entire dataset 

was split in half, with 70% being used for the training phase and 30% for the testing phase. 

Several iterations are performed to determine the best ANN capacity model, as detailed in 

Tab. 2. the best ten ANN models are selected through root-mean-square error (RMSE) and 

overall R2 values. Finally, the most suitable ANN model is selected from ten ANN models. In 

this study, three Levenberg-Marquardt Neural Network (LMNN) and seven Bayesian 

Regularisation Neural Network (BRNN) based capacity models are developed. The transfer 

function introduces non-linearity to the neural network. It transforms the weighted sum of 

inputs and biases into the output of a neuron. In the present model, the hyperbolic tangent 

sigmoid transfer function (Tansig) squashes input values to a range between -1 and 1. It is a 

smooth, differentiable function, crucial for backpropagation during training. The training 

function Bayesian regularisation back propagation (Train BR) is responsible for adjusting the 

weights and biases of the network during the training phase. Its goal is to minimize the 

difference between the predicted outputs and the observed values. The optimisation algorithms 

use the gradient of the loss function concerning the parameters to update the weights and biases 

iteratively. The learning function involves setting hyperparameters, including the learning rate 

and possibly other parameters that control the training process. The learning rate determines 

the step size during weight updates and influences the convergence and stability of the training, 

and hence an adaptive learning function gradient descent with momentum (Learn GDM) is 

employed for the study. The performance function quantifies the difference between the 

predicted values and the observed values. Consequently, mean square error with regularisation 

(MSEREG) is a performance function that combines the Mean Square Error (MSE) with a 

regularisation term to prevent overfitting and control the complexity of a model during training 

and predicts the capacity of a developed model by using ANN. In addition to these, the number 

of iterations (epochs) varied from 500 to 1000 to get the best result. Based on the RMSE results 

and overall R2, the most suitable model is selected. It is observed from Tab. 2 that BRNN based 

model having four numbers of hidden neurons is the best fitted as the RMSE and overall R2 

values of the model were found to be 167.89 and 0.97 respectively. 

 

 Tab. 2 

Network details with several iterations (Trial 1-10) 

 

Trial No. 1 2 3 4 5 

No. of 

hidden layer 
1 1 1 1 1 

No. of 

hidden 

neurons 

3 4 6 7 8 

Transfer 

function 
Tansig Tansig Tansig Tansig Tansig 

Training 

function 
Train LM 

Train  

BR 

Train 

 BR 

Train  

BR 

Train  

BR 

Adaptive 

learning 

function 

Learn GDM Learn GDM Learn GDM 
Learn  

GD 
Learn GDM 
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Performance 

function 
MSE MSEREG MSEREG MSEREG MSEREG 

No. of 

epochs 
500 1000 1000 700 1000 

RMSE 267.28 167.8 212.21 216.63 230.30 

Overall R2 0.92 0.97 0.96 0.96 0.95 

Trial No. 6 7 8 9 10 

No. of 

hidden layer 
1 1 1 1 1 

No. of 

hidden 

neurons 

3 4 7 6 8 

Transfer 

function 
Logsig Logsig Logsig Logsig Logsig 

Training 

function 

Train  

BR 
Train BR 

Train  

BR 
Train LM Train LM 

Adaptive 

learning 

function 

Learn GDM Learn GD Learn GDM 
Learn 

GDM 
Learn GD 

Performance 

function 
MSEREG MSE MSEREG MSE MSE 

No. of 

epochs 
500 1000 1000 1000 700 

RMSE 222.14 190.3 214.00 218.2 240.9 

Overall R2 0.95 0.96 0.96 0.95 0.95 

 

Note:  

Tansig: Hyperbolic tangent sigmoid transfer function 

Logsig: Log-sigmoid transfer function 

Train LM: Levenberg-Marquardt backpropagation training function 

Train BR: Bayesian regularization backpropagation training function 

Learn GD: Gradient descent adaptive learning function 

Learn GDM: Gradient descent with momentum  

MSE: Mean square error 

MSEREG: Mean square error with regularization 

 

An ANN equation was formulated in the present study by utilizing 7 explanatory variables 

and observing through a trained network. By using the weights and biases observed in this 

analysis as provided in Tab. 3, the following mathematical expressions were developed for the 

capacity prediction of roundabouts. For this, the procedure follows three steps. In the first step, 

𝐴1 to 𝐴4  is to be calculated using equation 1(a) to 1(d). The Input (I) and output (O) weights 

of four hidden neurons are represented in the Tab. 4. The values obtained from 𝐴1 to 𝐴4  is to 

be used in the equation 2(a) to 2(d) to get the desired values of 𝐵1 to 𝐵4 . The third step belongs 

to 𝐶1 which will give the final expression as per equation (3). Hence the normalized capacity 

equation (𝑄𝑒𝑛) will be written as in equation (4). 
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Tab. 3 

Connecting weights and biases with normalized entry capacity prediction model 

 

No. of 

hidden 

neurons 

Weights Biases 

I1  

(𝑊𝑙) 

I2 

 ( 𝑇𝑐) 

I3 

 (𝑊𝑤) 

I4 

 (𝐸𝑤) 

I5 

 (𝑞𝑐) 

I6 

 (𝑇𝑓) 
I7 

 (𝐷) 

O 

 (𝑄𝑒) 
     I O 

1 
-

0.068 

-

0.539 
0.298 0.261 

-

0.563 

-

0.537 

-

0.348 
1.040 0.142 0.389 

2 0.221 
-

0.329 
0.003 0.545 

-

0.560 
0.528 

-

0.343 
0.697 -0.602 - 

3 0.388 0.282 0.029 
-

0.262 

-

0.309 

-

0.650 
0.250 0.873 -1.450 - 

4 
-

0.061 

-

1.184 
0.047 

-

0.285 

-

0.752 

-

0.497 

-

0.913 

-

0.772 
-0.021 - 

 

𝐴1 = 0.1424 − 0.0682 𝑊𝑙 − 0.5399 𝑇𝑐 + 0.2984 𝑊𝑤 − 0.2619 𝐸𝑤 − 0.5635 𝑞𝑐 

                    − 0.5374 𝑇𝑓 − 0.3486 𝐷                                                      1(a) 

 

𝐴2 = − 0.6025 + 0.2217 𝑊𝑙 − 0.329 𝑇𝑐 + 0.0031 𝑊𝑤 + 0.5453 𝐸𝑤 − 0.5607 𝑞𝑐 

                     + 0.5281 𝑇𝑓 − 0.3439 𝐷                                                                                     

    1(b) 

 

𝐴3 = − 1.4505 + 0.3888 𝑊𝑙 + 0.2827 𝑇𝑐 + 0.0295 𝑊𝑤 − 0.2624 𝐸𝑤 − 0.3095 𝑞𝑐 

         − 0.6504 𝑇𝑓 − 0.2506 𝐷                                                                     1(c) 

 

𝐴4 = − 0.0210 − 0.0611 𝑊𝑙 − 1.184 𝑇𝑐 + 0.0474 𝑊𝑤 − 0.2852 𝐸𝑤 − 0.7529 𝑞𝑐 

                   − 0.4978 𝑇𝑓 − 0.9136 𝐷                  1(d) 

 

Tab. 4 

Connecting weights of four hidden neurons 

 

No. of 

hidden 

neurons 

Weights 

I1  

(𝑊𝑙) 

I2 

 ( 𝑇𝑐) 

I3 

 (𝑊𝑤) 

I4 

 (𝐸𝑤) 

I5 

 (𝑞𝑐) 

I6 

 (𝑇𝑓) 
I7 

 (𝐷) 

O  

(𝑄𝑒) 

1 -0.0682 -0.5399 0.2984 0.2619 -0.5635 -0.5374 -0.3486 1.0402 

2 0.2217 -0.329 0.0031 0.5453 -0.5607 0.5281 -0.3439 0.6974 

3 0.3888 0.2827 0.0295 -0.2624 -0.3095 -0.6504 0.2506 0.8736 

4 -0.0611 -1.184 0.0474 -0.2852 -0.7529 -0.4978 -0.9136 -0.7726 

 

The expression for evaluating B term is written as follows: 

𝐵1 =  1.0402 
𝑒𝐴1  − 𝑒−𝐴1

𝑒𝐴1  + 𝑒−𝐴1
                                                  2(a) 

  𝐵2 =  0.6974 
𝑒𝐴2  − 𝑒−𝐴2

𝑒𝐴2  + 𝑒−𝐴2
                                                       2(b) 

𝐵3 =  0.8736 
𝑒𝐴3  − 𝑒−𝐴3

𝑒𝐴3  + 𝑒−𝐴3
                                                       2(c) 

                                              𝐵4 =  −0.7726 
𝑒𝐴4  − 𝑒−𝐴4

𝑒𝐴4  + 𝑒−𝐴4
                                                    2(d) 
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Then the final term 𝐶 will be evaluated as 

 

𝐶1 = 0.3898 + 𝐵1 + 𝐵2 + 𝐵3 + 𝐵4                                          (3)                                                                                            

 

𝑄𝑒𝑛 =  
𝑒𝐶1  − 𝑒−𝐶1

𝑒𝐶1  + 𝑒−𝐶1
           (4) 

 

The aforementioned equation (4) yields a capacity value between -1 and 1, which will be 

denormalized according to equation (5). 

 

      𝑄𝑒 = 0.5 (𝑄𝑒𝑛 + 1)(𝑄𝑒𝑚𝑎𝑥 −  𝑄𝑒𝑚𝑖𝑛) +  𝑄𝑒𝑚𝑖𝑛                                      (5) 

 

Where, 𝑄𝑒𝑚𝑎𝑥 is the maximum and 𝑄𝑒𝑚𝑖𝑛 is the minimum values of roundabouts entry 

capacity (𝑄𝑒) under the provided data set accordingly.  

 

3.4. Suitability of entry capacity model 

 

To ensure the development of a suitable entry capacity model, a number of statistical tests 

are performed to evaluate the reliability of the ANN model as detailed in Tab. 5. The statistical 

tests include best-fit calculations, error-calculating variables, mathematical calculations, 

cumulative probability values, and predictions with an accuracy level of less than 20%. The 

coefficient of determination (R2), which executes from 0 to 1, represents the degree of goodness 

of fit, and higher values indicate a better fit. Nash-sutcliffe model efficiency coefficient (E) is 

generally used to assess the prediction ability of the developed model.  The value of ‘E’ can 

range from -∞ to 1. If the value of ‘E’ is close to 1, then it is known to be more accurate in the 

developed model. The absolute value is measured by the modulus value of the difference 

between observed and predicted values. The average absolute error (AAE) is measured as the 

average of the absolute difference between observed and predicted values, whereas the 

maximum of the measured absolute errors is known as maximum absolute error (MAE).   The 

Root Mean Square Error (RMSE) is intended to indicate a model's accuracy, and a smaller value 

is preferable. The ranges of AAE and RMSE are in between 0 to ∞. The detailed formula for 

evaluating the R2, E, AAE, MAE and RMSE are given as equations 6(a) to 6(e). The  𝑂𝑖 and 𝑃𝑖 

are the observed and predicted values of entry capacity at roundabouts, while 𝑂𝑚𝑒𝑎𝑛, 𝑃𝑚𝑒𝑎𝑛 

represents the mean values of the observed and predicted data sets, whereas ‘𝑖’ and  ‘n’ are the 

variable sequence and total number of data respectively. Further, the ratio of predicted capacity 

to observed capacity is denoted as CP/CO, and ‘μ’ and ‘σ’  are the mean and standard deviation 

of  natural logarithmic values of   CP/CO. Values for ‘μ’ and ‘σ’ are close to 1 and 0 in the 

present study, respectively, indicating that the proposed models can make reliable predictions. 

The cumulative probability density function has, ‘P50 values’ considered to be the most probable 

value with a probability of exceedance of about more than 50% while ‘P90 values’ are the 

conservative estimate having a 90% probability of exceedance. Values (P50 and P90) are 

observed to be near to 1, suggesting greater effectiveness for the provided data set. The log-

normal distribution function is employed, and further log-normal and histogram graphs are 

plotted to evaluate the accuracy percentage of a model. 
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𝑅2 =  
∑  [(𝑂𝑖−𝑂𝑚𝑒𝑎𝑛) (𝑃𝑖−𝑃𝑚𝑒𝑎𝑛)]2𝑛

𝑖=1

[∑ (𝑂𝑖−𝑂𝑚𝑒𝑎𝑛)𝑛
𝑖=1

2
   ∑ (𝑃𝑖−𝑃𝑚𝑒𝑎𝑛)𝑛

𝑖=1
2

]
                                                          6(a) 

 

𝐸 = 1 −  
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−𝑂𝑚𝑒𝑎𝑛)2𝑛
𝑖=1

                          6(b) 

 

𝐴𝐴𝐸 =
1

𝑛
∑ |𝑂𝑖 − 𝑃𝑖|𝑛

𝑖                           6(c) 

 

𝑀𝐴𝐸 =  𝑚𝑎𝑥𝑖𝑚𝑢𝑚( |𝑂𝑖 − 𝑃𝑖|)               6(d) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑ (𝑂𝑖 − 𝑃𝑖)2𝑛

𝑖=1                               6(e) 

 

Tab. 5 

Statistical test of developed model 

 

Model 

Data 

Splitt

ing 

Co-

relation 

Analysis 

Error Calculations 

Mathemat

ical 

Calculatio

ns of 

CP/CO 

Cumulative 

Probability 

of CP/CO 

± 20% Prediction 

Accuracy (%) 

R2 E AAE MAE RMSE µ σ 
Ratio* at Log- 

normal 

Histogra

m P50 P90 

BRNN 

Model 

Train

ing 

0.9

3 

0.9

3 

149.

2 

455.

1 
184.8 

1.0

0 

0.1

1 

0.9

9 
1.13 

92.32

% 
100% 

Testi

ng 

0.9

5 

0.9

4 

167.

9 

418.

7 
197.9 

1.0

5 

0.2

2 

0.9

5 
1.22 

91.01

% 
94% 

 

Note: R2 = Coefficient of determination, E = Nash-Sutcliffe coefficient, AAE = Average 

Absolute Error, MAE = Maximum Absolute Error, RMSE = Root Mean Square Error, CP = 

Predicted Capacity, CO = Observed Capacity 

 

3.5. Relative Importance of Input Variables 

 

To assess the relative importance of input variables in ANN modelling, two methods such 

as Connection weight approach and Garson’s algorithm are applied in this study. In connection 

weight approach, the product of each input and output weights (𝐴𝑖𝑗) are calculated in the Tab. 

6. Then for each hidden neuron  𝐴𝑖𝑗 is divided by sum of all input variables to obtain 𝐵𝑖𝑗 in 

details given in the Tab. 7. Then for each hidden neuron, the sum of the product 𝑆𝑗 is calculated. 

For example, 

 

𝑆1 =  𝐵11 + 𝐵21 + 𝐵31 + 𝐵41 + 𝐵51 + 𝐵61 + 𝐵71                                                    7(a) 
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Tab. 6 

Products of each input and output weights (𝐴𝑖𝑗) 

 

No. of 

hidden 

neurons 

I1  

(𝑾𝒍) 

I2 

 ( 𝑻𝒄) 

I3 

 (𝑾𝒘) 

I4 

 (𝑬𝒘) 

I5 

 (𝒒𝒄) 

I6 

 (𝑻𝒇) 
I7 

 (𝑫) 

1 -0.0709 -0.5616 0.3103 0.2724 -0.5861 -0.559 -0.3626 

2 0.1546 -0.2294 0.0021 0.3802 -0.391 0.3682 -0.2398 

3 0.3396 0.2469 0.0257 -0.2292 -0.2703 -0.5681 0.2189 

4 0.0472 0.9147 -0.0366 0.2203 0.5816 0.3846 0.7058 

 

Tab. 7 

Ratio of (𝐴𝑖𝑗) with sum of all input variables (𝐵𝑖𝑗) and sum of product (𝑆𝑗) 

 

No. of 

hidden 

neurons 

I1  

(𝑾𝒍) 

I2 

( 𝑻𝒄) 

I3 

(𝑾𝒘) 

I4 

(𝑬𝒘) 

I5 

(𝒒𝒄) 

I6 

(𝑻𝒇) 
I7 

(𝑫) 

1 0.0455 0.3605 -0.1992 -0.1749 0.3763 0.3589 0.2328 

2 3.4432 -5.1091 0.0467 8.4677 -8.7082 8.2004 -5.3407 

3 -1.4359 -1.0439 -0.1086 0.9691 1.1429 2.4021 -0.9255 

4 0.0167 0.3246 -0.0129 0.0781 0.2064 0.1364 0.2504 

Sum 𝑆1= 2.069 
𝑆2=  

-5.4678 

𝑆3=  

-0.2741 

𝑆4=  

9.3401 

𝑆5=  

-6.9825 

𝑆6=  

1.0979 

𝑆7=  

-5.783 

 

The analysis suggests that the BRNN model is best for the present study. Additionally, this 

study applied the Connection weight technique and Garson's algorithm for assessing the 

relevance of explanatory variables in ANN modelling [12]. The input variables' contributions 

are detailed in Tab. 8. The Connected Weights technique, as given in equation 7(a), allows 

greater influence on input variables with larger absolute weights on the output calculation of 

the hidden layer and the overall performance of the network. Garson's algorithm employs the 

same procedure to assess the contribution of input variables, and the ranking of each input 

variable is determined by equation 7(b). 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 =  
𝑆1

𝑆1+𝑆2+𝑆3+𝑆4+𝑆5+𝑆6+𝑆7
                         7(b) 

 

Where S1, S2, ……S7 is the sum of product in each hidden neuron.  

 

Tab. 8 presents the ranking of input variables based on the absolute value of Connection 

weight. Follow-up time (𝑇𝑓), entry width (𝐸𝑤) and circulating flow (𝑞𝑐), with absolute values 

of 11.10, 9.34, and 6.98, are specified in first, second, and third order. Tab. 5 even indicates 

that follow-up time (𝑇𝑓), critical gap ( 𝑇𝑐) and circulating flow (𝑞𝑐) contribute around 21.15%, 

19.56%, and 19.50% to model fitting, respectively. Approximately 60% of capacity modelling 

comes from these three variables (𝑇𝑓, 𝑇𝑐 and 𝑞𝑐) which characterise traffic behaviour under 

mixed traffic situations. The remaining contributing variables (𝑊𝑤, 𝑊𝑤, 𝐸𝑤 and 𝐷) that pertain 

to the geometric state of the roundabout collectively account for around 40% of the capacity 

prediction that has been formulated in the present investigation. The use of Connection weight 



Modelling roundabout entry capacity for mixed traffic flow using ANN… 221. 

 

approach and Garson algorithm revealed that weaving width (𝑊𝑤) has a modest influence on 

the development of the model. 

 

Tab. 8 

Contribution of input variables in BRNN model 

 

Input variables 

Connection weight approach Garson algorithm 

Sum 

(Absolute Value) 
Rank Relative importance (%) Rank 

I1 (𝑊𝑙) 2.07 6 7.72 6 

I2 ( 𝑇𝑐) 5.47 5 19.56 2 

I3 (𝑊𝑤) 0.27 7 3.53 7 

I4 (𝐸𝑤) 9.34 2 12.80 5 

I5 (𝑞𝑐) 6.98 3 19.50 3 

I6 (𝑇𝑓) 11.10 1 21.15 1 

I7 (𝐷) 5.78 4 15.71 4 

 

 

4. CONCLUSIONS 

 

ANN-based model has been receiving wide appreciation over regression-based models as it 

is capable of establishing nonlinear relationship between dependent and independent variables. 

In this study, ten ANN-based models were developed for roundabout entry capacity prediction 

purpose. It was observed that the BRNN based model has the highest R2 value of 0.97 and 

lowest RMSE value of 167.89 among all ten models. Therefore, this model was selected for the 

capacity prediction in this study. The comparison of various existing capacity models with the 

ANN model is depicted in Fig. 4. 

Moreover, to appraise the BRNN model, several statistical tests were performed under a 

given data set. Sensitivity analysis is carried out using Connection weight approach and Garson 

algorithm to observe the influence of input variables in the proposed BRNN model according 

to Garson algorithm, gap acceptance variables including follow-up time (𝑇𝑓), critical gap ( 𝑇𝑐), 

and circulating flow (𝑞𝑐) all played significant roles in the model fitting, with corresponding 

contributions of 21.15, 19.56, and 19.50 percent. Based on the findings of the Connection 

Weight approach, the following parameters are prioritised in the model development process: 

follow-up time (𝑇𝑓), entry width (𝐸𝑤), and circulating flow (𝑞𝑐). These parameters have 

respective absolute values of 11.10, 9.34, and 6.98 for the connection weight approach.  It was 

also found that weaving width (𝑊𝑤) has contributed just 3.53% to the overall model and that 

the absolute value of the connection weight was only 0.27.   

Planners and designers now have a practical tool in the form of the proposed models (ANN) 

for predicting capacity under traffic situations analogous to those in other developing countries; 

however, further research is needed to determine the effect of pedestrian crossings on this 

estimation. 
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Fig. 4. Comparison of various capacity models  
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Appendix 1 

Geometric specifications of selected unsignalized roundabouts 

 

 

Sl. 

No. 

Site  City 
Leg 

At 

Approac

h width 

( 𝐴𝑤)   

Entry 

width 

(𝐸𝑤)   

Weaving 

width 

( 𝑊𝑤)   

Weaving 

length 

( 𝑊𝑙)   

Diameter 

of central 

island  

(𝐷) 

1 
Sector-2 

Square 

Rourkela,  

Odisha 

E 9.58 11 12.5 34.02 

23.83 
W 18.73 13.44 28.5 43.82 

N 22.78 12 21.09 36.74 

S 18.4 15.75 29.56 40.91 

2 
SAIL 

Square 

Rourkela,  

Odisha 

E 6.53 19.36 32 49.31 

50 
W 17.51 14.17 20.98 43.84 

N 22 19.74 32.45 48.54 

S 19.92 18.36 26.05 44.27 

3 
Ambagan 

Square 

Rourkela,  

Odisha 

E 11.24 15.1 27.19 43.99 

38 
W 15.14 19.81 35.01 50.22 

N 23.4 11.59 23.43 41.59 

S 18.91 18.23 33.72 53.77 

4 
Plant Side 

Square 

Rourkela,  

Odisha 

E 6.2 15.43 31.12 43.31 

48.87 
W 8.1 13.68 24.25 41 

N 18.01 19.17 30.96 45 

S 19.2 16.12 29.58 45.07 

5 

Traffic 

Gate 

Square 

Rourkela,  

Odisha 

E 12.67 15.52 23.31 43.79 

43.55 W 8.63 5.41 19.63 39.87 

N 21.27 15.74 32.25 51.7 

S 20.13 8.5 21.58 37.92 
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6 
Birsa 

Square 

Rourkela,  

Odisha 

N 10.58 17.55 33.2 50.95 

60.12 
N-E 9.63 16.61 32.72 52.33 

E 12.06 18.9 33.91 58.72 

W 12.77 17.22 28 47.67 

7 
Panposh 

Square 

Rourkela,  

Odisha 

E 16.07 14.3 27.9 48.21 

30.28 S 16.95 13.76 23.75 42.87 

W 14.02 15.08 29.56 41.86 

8 
Ainthapalli 

Square 
Sambalpur, Odisha 

N-E 8.01 12.93 27.57 35.56 

47.88 
N-W 14.18 13.2 19.57 43.18 

S-E 13.12 18.97 30.95 46.97 

S-W 11.66 13.33 24.85 37.95 

9 

Master 

Canteen 

Square 

Bhubaneswar, Odisha 

N 25.99 17.72 26.78 48.65 

45.91 
S 25.56 14.55 28.99 53.44 

E 16.85 14.8 32.26 49.71 

W 12.8 16.79 27.6 44.23 

10 
Gopabandh

u Square 
Bhubaneswar, Odisha 

N 10.1 18.33 32.56 49.83 

51.62 E 10.84 17.68 29.07 47.35 

W 10.01 17.82 23.99 46.58 

11 
Jobra 

Square 

Cuttack,  

Odisha 

N 10.2 19.68 31.25 48.71 

37.21 
S 8.2 16.5 27 46.71 

N-E 10.73 15.42 20 41.9 

W 15.77 15.04 29.87 46.57 

12 
Palbani 

Square 

Baripada,  

Odisha 

E 9.47 18.98 30.57 47.87  

W 9.4 17.96 31.35 52.3 58.88 

N 9.53 16.47 27.94 50.15  

S 10.45 12.41 21.44 40.86  

13 
Dargadhi 

Square 

Baripada,  

Odisha 

E 10.42 14.98 23.6 45  

W 11.86 18.97 31.33 52.76 39.38 

N 10.89 18.12 32.7 53.28  

S 12.31 19.02 33.45 50.64  

14 
Salt-lake 

Square 

Kolkata,  

West Bengal 

NE 8.85 15.85 30.1 46.08  

NW 8.85 11.52 21.96 42.08 33.55 

SE 8.85 13.57 22 35.09  

SW 8.85 11.85 28.32 36.08  

15 

Albert 

Ekka 

Square 

Ranchi, Jharkhand 

N-E 15.45 4.72 9.48 32.08  

S 19.58 5.2 8.2 29.42 10.76 

N-W 13.38 6.31 15.39 31.57  

16 

Old Bus 

Stand 

Square 

Bilaspur, 

Chhattisgarh 

E 7 18.19 34.86 51.25  

W 7.2 18.25 27.35 48.7  

N 9.46 4.43 15.21 30.15 55 

S 9.81 16.9 30.15 56.2  
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17 
Ramnagar 

Square 
Nagpur, Maharashtra 

NE 13.93 11 23.85 40.31  

NW 11.52 13.94 23.57 36.66  

W 11.26 11.31 25.47 37.83  

SW 13.29 11.22 23.94 36.4 36.54 

E 6.93 13.04 22.33 38.12  

SE 15.33 5.9 14.8 31.2  

S 11.45 5.12 11.02 28.96  

18 
Medical 

Square 
Nagpur, Maharashtra 

N 6.74 6.14 13.39 38.96  

NE 7.32 9.5 17.45 38.52  

SE 6.38 18.36 27.01 43.8  

S 10.97 16.71 30.02 47.63 51.22 

SW 9.62 16.77 28.47 49.22  

NW 6.71 13.97 33.02 41.15  

19 
Chacka  

Junction 

Thiruvananthapuram,  

Kerala 

NE 7.64 16.34 32.01 44.32  

NW 6.21 14.71 26.025 45.34 46.8 

SE 8.43 16.94 26.98 39.8  

SW 6.98 15.94 30.01 44.24  

20 

Womens 

College, 

Vazhuthak

adu 

Thiruvananthapuram, 

Kerala 

N 18.39 19.1 32.67 46.85  

S 17.59 16.59 20.5 40.42 34.28 

E 6.77 13.85 28.8 43.45  

W 13.88 16.47 25.26 40.89  

21 

MVP 

Colony 

Square 

Visakhapatnam, 

Andhra Pradesh 

E 8.12 17.3 28.9 47.98  

W 8.19 18.79 29.98 50.05 45.47 

N 8.09 14.65 27.59 43.1  

S 7.98 20.12 29.6 52.3  

22 

Diamond 

Park 

Junction 

Visakhapatnam, 

Andhra Pradesh 

E 14.51 19.8 28 53.29  

W 14.01 15.81 31.65 47.13 54.8 

N 18.19 18.5 25.14 47.79  

S 15.52 16.88 22.51 38  

23 

BR 

Ambedkar 

Square 

Visakhapatnam, 

Andhra Pradesh 

E 11.2 18.93 30.02 45.69  

W 11.71 15.3 22.91 38.31 40.1 

N 10.04 19.07 29.95 41.22  

S 11.05 14.79 24.9 41.02  

24 

Dornama 

Raju 

Square 

Visakhapatnam, 

Andhra Pradesh 

N 14.29 12.15 31.84 41.59  

S 20.85 14 29.84 41.22 40.65 

E 15.86 14.58 22.9 40.26  

W 20.47 10.12 22.86 47.86  

25 

Sector 43-

44 

Junction 

Chandigarh 

NE 13.97 16.89 33.17 44.72  

NW 13.75 19.46 33.25 45.88  

SE 11.68 18.48 30.04 50.89 50 

SW 11.38 16.88 30.58 41.81  
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26 
Sector 42 

Junction 
Chandigarh 

NE 8.28 19.79 29.55 51.59  

NW 9.39 19.14 29.72 45.14 49 

SE 8.14 19.87 29.56 46.13  

SW 8.38 14.98 27.9 48.62  

27 
Sector 49 

Junction 
Chandigarh 

N 10.4 16.9 34 56  

S 10 16.4 30.5 48.3 57 

E 10.6 19.3 31 51.6  

W 11 16.2 32.8 52.5  

 

Note: N = North, S = South, E = East, W = West, NE = North-East, NW = North-West, SE = 

South-East, SW = South- West 
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