
Scientific Journal of Silesian University of Technology. Series Transport 
Zeszyty Naukowe Politechniki Śląskiej. Seria Transport 

 

 

 

Volume 123  2024 

 

p-ISSN: 0209-3324 

 

e-ISSN: 2450-1549 

 

DOI: https://doi.org/10.20858/sjsutst.2024.123.5 

 

Journal homepage: http://sjsutst.polsl.pl 

   

 

Article citation information: 

Krawczyk, T., Papis, M., Bielawski, R., Rządkowski, W. Possible applications of artificial 

intelligence algorithms in F-16 aircraft. Scientific Journal of Silesian University of 

Technology. Series Transport. 2024, 123, 101-131. ISSN: 0209-3324. 

DOI: https://doi.org/10.20858/sjsutst.2024.123.5. 

 

 

Tomasz KRAWCZYK1, Mateusz PAPIS2, Radosław BIELAWSKI3, 

Witold RZĄDKOWSKI4 

 

 

 

POSSIBLE APPLICATIONS OF ARTIFICIAL INTELLIGENCE 

ALGORITHMS IN F-16 AIRCRAFT 
 

Summary. The F-16 aircraft, widely used by the Polish Army Air Force, requires 

modifications based on Artificial Intelligence (AI) algorithms to enhance its combat 

capabilities and performance. This study aims to develop comprehensive guidelines 

for this purpose by first describing F-16 systems and categorizing AI algorithms. 

Machine learning, deep learning, fuzzy logic, evolutionary algorithms, and swarm 

intelligence are reviewed for their potential applications in modern aircraft. 

Subsequently, specific algorithms applicable to F-16 systems are identified, with 

conclusions drawn on their suitability based on system features. The resultant 

analysis informs potential F-16 modifications and anticipates future AI applications 

in military aircraft, facilitating the guidance of new algorithmic developments and 

offering benefits to similar aircraft types. Moreover, directions for future research 

and development work are delineated. 
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1. INTRODUCTION 

 

The F-16 Fighting Falcon is a 4th generation fighter that is in service with many air forces. 

Currently, approximately 4,600 aircraft have been produced, out of which, 2280 are in active 

service. This aircraft is used in fighter missions as well as in assault missions. It is very popular 

due to its versatility of use in various military missions, as well as a favourable balance of shoot-

downs of enemy aircraft – currently over 70 shoot-downs of enemy aircraft. [113, 120]. Despite 

the F-16 being replaced by the F-35, it is expected that the F-16 will continue to be in high 

demand, requiring modifications over time to meet battlefield tasks. One such modification is 

the possibility of using Artificial Intelligence (AI), mostly machine learning (ML) and deep 

learning (DL) algorithms in the F-16 aircraft. Work on such modifications has already been 

initiated by DARPA (Defense Advanced Research Projects Agency), which conducts research 

based on the F-16 aircraft in the field of self-piloting as well as air combat by artificial 

intelligence. The AI program of Heron Systems was used for this purpose. It should be noted 

that the current tests performed under the framework of research and development were 

conducted only in a virtual environment. As part of the test, a virtual 1-on-1, AI duel was 

organized against an experienced F-16 pilot, who was defeated in five duels by the AI. It is 

worth noting that the research and development program did not include the use of AI as a 

component supporting the pilot during air combat, which may be important for the users of F-

16 aircraft. However, the DARPA program has opened a new direction for the implementation 

of AI algorithms in military aviation and in particular for the F-16 aircraft [41,50]. 

The considerable number of F-16 aircraft produced will provide a substantial amount of data 

to feed the prepared artificial intelligence algorithms. Ongoing research will enable these 

aircraft to adapt to meet the demands of modern air combat. Consequently, the F-16 aircraft 

will become an adaptive platform capable of utilizing AI technologies to optimize performance, 

decision-making, and mission execution. 

The capability of AI to pilot and participate in air combats autonomously or for the AI 

component to assist the pilot of a military aircraft in the execution of a combat mission opens 

up new opportunities in military aviation [29]. Current AI algorithms can contribute to solving 

many problems in military aviation such as full “utilization” of aerodynamics and aircraft 

mechanics in the flight control system, optimization of armament use during air combat, 

operation of radar systems and Electronic Attack Jammer Pods (EAJP), aircraft control and 

decision-making at critical moments of flight or air combat, optimization of power unit control, 

optimization of fuel consumption, real-time generation and analysis of data from on-board 

sensors, predictive maintenance, etc. The area of application of AI algorithms can be considered 

modularly depending on the specific purpose of the aircraft, e.g.: fighter, assault, 

reconnaissance, or electronic warfare mission. The F-16 aircraft is a universal combat platform 

that allows for the modular implementation of AI algorithms in this respect.  

The wide application of Artificial Intelligence algorithms in military and civil aviation and 

the characteristics of individual systems of the F-16 aircraft will allow detailing the possibilities 

of implementation of particular algorithms in the case of F-16 aircraft systems. 
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In this research, the focus was on exploring the possibilities of applying specific artificial 

intelligence algorithms to the functionalities of F-16 aircraft systems. Consequently, successive 

stages of the research were developed, which are described in the subsequent sections of this 

paper: 

- characteristics of the F-16 aircraft systems in which AI algorithms can be applied; 

- overview of artificial intelligence algorithms; 

- overview of research on the application of AI algorithms in aviation; 

- assessment of potential applications of artificial intelligence algorithms in F-16 to 

improve aircraft performance based on matrix analysis; 

- discussion and conclusions. 

 

 

2. CHARACTERISTICS OF THE F-16 AIRCRAFT 
 

The capabilities of AI algorithms can be applied to the following systems of the F-16 aircraft: 

- general characteristics of the airframe structure; 

- aircraft engine; 

- flight control system; 

- fuel system; 

- aircraft weapon; 

- radar system. 

 

In addition, airworthiness and maintenance management should be considered as a separate 

additional system. 

Tab. 1 provides basic data on F-16 aircraft systems based on [1, 24, 79, 116, 130]. More 

detailed information can be found in [88].  

 

Tab. 1 

F-16 systems 

 

General characteristics of the airframe structure 

A single-engine, light fighter aircraft. It was built in a classic mid-wing configuration. Its 

basic dimensions are: wingspan of 9.8 m, aircraft length of 14.8 m, wing area: 27.87 m2. 

The fuselage has a semi-monocoque construction, covering densely supported by frames 

and half frames. 

Aircraft engine 

The power unit (single-engine) of the F-16 aircraft consists of a Pratt & Whitney F100-

PW-229 engine with 79.13 kN and 128.91 kN thrust with afterburning. It is a two-flow 

engine with a hydraulically regulated nozzle.  

Flight control system 

A fly-by-wire control system based on the Lear Siegler flight parameters computer, which 

uses data, among others from yoke (control column), control surface position transmitters, 

accelerometers, gyroscopes, angle of attack, and slide transmitters, aerodynamic data 

computer. Moreover, the system includes hydraulic actuators of control surfaces. 

Fuel system 

The F-16 engine is supplied with fuel from five fuselage tanks and two wing tanks, with 

a total capacity of 3,986 l. The fuel tanks have a self-sealing design. It is possible to mount 

additional fuel tanks. 
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Aircraft weapon 

The primary weaponry is the General Electric M61 A1 six-barrel cannon (20 mm calibre).  

Suspended armament: medium-range AIM-120 AMRAAM air-to-air missiles, LAU-114 

launchers for firing short-range Sidewinder, and medium-range AMRAAM air-to-air 

missiles. 

Guided air-to-ground armament consists of AGM-65A/B/D/G Maverick and AS30L 

missiles, AGM-88 HARM and AGM-45 Shrike anti-radiation guided missiles, AGM-84 

Harpoon or AGM-119 Penguin Mk 3 air-to-air guided missiles. Unguided missiles of 70 

mm calibre can be fired from LAU-68 and LAU-88 multi-barrel launchers. The aircraft's 

bombarding armament consists of Paveway II series guided bombs. The aircraft is also 

adapted to carry B43 nuclear bombs. 

Radar system 

A common radar used in F-16 aircraft is the Westinghouse AN/APG-68(V)5 (AN.APG-

68 in older versions of the F-16C), operating in the I/J waveband. The (V)5 variant added 

an SA (Situation Awareness) module to warn the pilot of a threat. Starting with Block 

50/52, a DTS digital map projector was added. Under ideal conditions, the maximum 

detection range for large targets (bombers) at high altitudes is 270 km. For small targets, 

it decreases to about 170 km. As regards targets visible on the ground, the analogous 

values are 230/130 km respectively. The radar can start tracking a target at a distance equal 

to about 60% of the detection distance. It is possible to track up to 10 targets 

simultaneously. The situation as seen by the radar is presented on multifunctional 

Honeywell indicators. The targets tracked by the station are also presented on the GEC-

Arconi wide-angle head-up display (HUD). The AN/APG-68 radar prepares data 

necessary for air-to-air and air-to-ground missiles. The latest versions of the radar 

dedicated to F-16 are the AN/APG-80 and AN/APG-83, which can track more targets 

simultaneously. 

 

 

3. ARTIFICIAL INTELLIGENCE ALGORITHMS AND THEIR APPLICATIONS IN 

AVIATION 

 

The first major step in the ongoing research is a review of Artificial Intelligence algorithms. 

The next stages of the ongoing research are shown in the diagram (Fig. 1). AI algorithms that 

may be used in aviation were identified. For this purpose, a study of the literature's current state 

was conducted, which, combined with a review of AI algorithms, enabled the development of 

a summary presented in the form of a table, illustrating the applications of AI algorithms in 

specific areas of aircraft systems. The next step involved analysing the potential applications of 

AI algorithms in relation to the functionality of the F-16 aircraft's systems. The last step was to 

develop proposals for modifying the aircraft systems using selected algorithms. 
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Fig. 1. Steps of the conducted analysis 

 

3.1. Overview of artificial intelligence algorithms 

 

The term Artificial Intelligence (AI) was pioneered by John McCarthy and presented at the 

Dartmouth Conference in 1956. In its shortened form, the term means “the intelligence 

exhibited by artificial devices” [80]. Since then, many definitions of the term AI have emerged. 

One of them was proposed by Andreas Kaplan and Michael Haenlein in 2019 [56]. They 

defined AI as “the ability of a system to correctly interpret data from external sources, learn 

from that data, and use that knowledge to perform specific tasks and achieve goals through 

flexible adaptation.”  From the perspective of defining algorithms relating to the term artificial 

intelligence, the following can be identified: machine learning algorithms, deep learning 

algorithms, fuzzy logic, evolutionary algorithms, and swarm intelligence, among others. The 

overview of selected algorithms is presented below. 

Machine learning (ML) algorithms analyse data, learn from it, and decide based on that data. 

Three techniques of machine learning algorithms can be identified — supervised learning, 

unsupervised learning, and reinforcement learning. In supervised learning, the user provides 

the algorithm with a pair of input data and desired output data, and the algorithm itself finds a 

way to produce the desired output data given the indicated input data. In unsupervised learning, 

only the input data is known, and no known output data is provided to the algorithm [83]. 

Reinforcement learning is the third branch of machine learning, in which the agent determines 

its optimal behaviour (action) in the environment based on the feedback (reward) it receives. 

This feedback is known as a reinforcement signal. The agent's goal is to maximize its 

cumulative reward over time [89].  The overview of selected ML algorithms is presented in 

Table 2.  

 

Tab. 2 

Overview of selected ML algorithms 

 

Group Examples of algorithms 

supervised learning 

[34, 83] 

linear regression (LinR); logistic regression (LogR); Support-Vector 

Machines (SVM); decision trees and random forests (DT&RF); naive 

Bayes classifier (NBC); k-means algorithm (k-m S); neural networks 

(NN); ensemble learning (EL) 

unsupervised 

learning [34, 89] 

Hierarchical Cluster Analysis (HCS); Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN), Hierarchical 

Overview of Artificial 

Intelligence (AI) 

algorithms: Machine 

Learning (ML), Deep 

Learning (DL) and 

others: fuzzy logic, 

evolutionary and swarm 

intelligence algorithms 

Overview of 

research on the 

application of 

AI algorithms in 

aviation 

Overview of the 

functions of F-

16 aircraft 

systems in terms 

of their 

application of 

AI algorithms 

Assignment 

of 

algorithms to 

functions of  

F-16 aircraft 

systems  
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DBSCAN (HDBSCAN); novelty and outlier detection (NOD) — 

one-sided support vector machine, isolation forest algorithms; 

Dimensionality-reduction and visualization algorithms (D-R&V) - 

Principal Component Analysis, Locally Linear Embedding, t-

Distributed Stochastic Neighbor Embedding; Independent 

Components Analysis (ICA) algorithm; k-means algorithm (k-m U); 

apriori algorithm (apriori); Singular Value Decomposition (SVD) 

reinforcement 

learning [34, 94, 

112] 

Agent policy (AP); state value function (SVF); Q-learning and deep 

Q-learning (QL&DQL); value function (VF); Monte Carlo methods 

(MC); Temporal Difference learning (TD); REINFORCE algorithm 

(REINF); combined algorithms (CA) 

 

The term Deep Learning (DL) refers to algorithms whose origins date back to attempts at 

modelling using neural networks. While in the case of Machine Learning, single-layer neural 

networks are used, in the case of Deep Learning, we are dealing with organized circuits 

consisting of many layers — at least two layers. Therefore, the term 'Deep learning' refers 

primarily to the extensive structure of a network consisting of many layers. The more layers, 

the deeper the network. A deeper network allows for better solutions to complex real-world 

problems, e.g., those that are characterized by significant non-linearity. When considering Deep 

Learning, it is necessary to indicate possible learning techniques that constitute the basis for 

building models of this class. Deep Learning is divided into three basic learning techniques: 

- Supervised or discriminative learning — in which discriminative functions are used for 

supervision or classification. Supervised learning requires labelling the values of the 

target function. In supervised learning, labelled data must be provided by humans. 

- Unsupervised or generative deep learning — which uses data without labelling it. The 

unsupervised learning process is carried out by sorting and classifying data. These 

processes involve correlation analysis or analysis of statistical distributions. In general, 

it can be said that in unsupervised learning, the system independently recognizes 

patterns through sorting and classification. 

- Hybrid learning — a technique that is based on the construction of models based on 

combinations of the above-mentioned techniques.  

 

The overview of selected DL algorithms based on [99] is presented in Table 3.  

 

Tab. 3 

Overview of selected DL algorithms, based on [99] 

 

Group Examples of algorithms 

supervised or 

discriminative deep 

learning 

multilayer perceptron (MLP); convolutional neural network 

(CVN), recurrent neural network (RNN); 

unsupervised or generative 

deep learning 

generative adversarial network (GAN); autoencoder (autoE); 

self-organizing /Kohonen map (SOM); restricted Boltzmann 

machine (RBM); deep belief network (DBN) 

hybrid learning 
hybrid deep neural networks (HDNN), deep transfer learning 

(DTL), deep reinforcement learning (DRL) 
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Other artificial intelligence algorithms include fuzzy logic, evolutionary algorithms, and 

swarm intelligence algorithms. Fuzzy logic is a form of multivalued logic in which the truth 

value of variables can be any real number between 0 and 1. It is used to handle the concept of 

partial truth, in which the truth value can range from completely true to completely false [87].  

Among the Artificial Intelligence algorithms that can be used, there is an evolutionary 

algorithm that refers to the mechanisms of species development known from biology. This 

algorithm uses the principles of evolution to solve complex optimization problems. The 

evolutionary algorithm consists in iteratively determining the best solution in terms of the 

adopted quality criterion, e.g. reliability. Currently, the most famous evolutionary algorithm is 

the genetic algorithm, which uses mutations and recombination of chromosomes of individuals, 

their selection and generational replacement [123].   

Swarm intelligence is found in biological systems such as ant colonies, bees, flocks of birds, 

animal husbandry, and bacterial growth. The operation of swarm intelligence is based on so-

called agents that act according to specific rules, often in a decentralized structure. The action 

of a single agent does not manifest intelligence, but a group of agents acting according to the 

rules can be described as swarm intelligence. This community, operating on the basis of the 

above-mentioned principles, is capable of self-organization. This action is based on interactions 

between agents; for example, a swarm of ants creates specific paths in an organized manner. 

Swarm intelligence can be implemented in a similar way, such as for the operation of drones 

[44-46]. 

 

3.2.Overview of research on the application of AI algorithms in aviation 

 

Interest in Artificial Intelligence techniques has contributed to many studies at the level of 

basic and development research. Below are presented selected studies related to possible 

applications of Artificial Intelligence algorithms in aviation divided into: machine learning, 

deep learning, and other Artificial Intelligence algorithms such as fuzzy logic, evolutionary 

algorithms, and swarm intelligence. 

 

Tab. 4 

Selected applications of ML algorithms – supervised learning 

 

SUPERVISED LEARNING 

Algorithm Selected applications 

linear 

regression  

1. Maintenance and aircraft equipment failure analysis [15];  

2. Wind prediction – fuel consumption [57]; 

3. Identification of complex dynamic data-driven failure models for more 

accurate flight planning and control under emergency conditions [12]; 

4. Modelling nonlinear and unstable aerodynamics during the design of 

future high-performance fighters and improving the angle of attack 

dynamics [14]; 

logistic 

regression 

1. A digital twin of avionics systems – system performance and fault 

location [117];  

2. Predictive maintenance, aircraft repair, and overhaul [5]; 

Support-

Vector 

Machines 

1. Maintenance and aircraft equipment failure analysis [11];  

2. Wind prediction – fuel consumption [57]; 
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3. Modelling nonlinear and unstable aerodynamics during the design of 

future high-performance fighters and improving the angle of attack 

dynamics [14]; 

4. A digital twin of avionics systems – system performance and fault 

location [117];  

5. Low-altitude obstacle detection and classification [3]; 

6. Classification of different types of signals in radar systems [121]; 

7. Identification of tactical manoeuvre of target based on air combat 

manoeuvre element [53];  

8. Recognition of tactical intent of multi-aircraft cooperative air combat 

[37]; 

9. Target threat assessment model in air combat [38]. 

Decision trees 

and random 

forests 

1. A digital twin of avionics systems – system performance and fault 

location [117];  

2. Fuel consumption analysis [6] 

3. Aerodynamics modelling based on decision tree and random forest 

using flight data [64] 

4. Modelling of aircraft nonlinear unsteady aerodynamics at high-angle 

attack 

5. Identification of tactical manoeuvre of target based on air combat 

manoeuvre element [53];  

6. Improving the anti-jamming effectiveness of infrared air-to-air missiles 

[86];  

7. Recognition of tactical intent of multi-aircraft cooperative air combat 

[37]; 

8. Engagement decision support tool for air combat engagement [21]. 

Naive Bayes 

classifier 

1. Identification of complex dynamic data-driven failure models for more 

accurate flight planning and control under emergency conditions [12]; 

2. A digital twin of avionics systems — system performance and fault 

location [117];  

3. Recognition of tactical intent of multi-aircraft cooperative air combat 

[37]; 

4. Anti-interference recognition of aerial infrared targets [71]. 

K-means 

algorithm 

1. A digital twin of avionics systems – system performance and fault 

location [117];  

2. Decision-making rules in air combat [76]; 

3. Radar scanning, signal acquisition, and processing, one-dimensional 

range image, SAR radar, ISAR image recognition, radar tracking and 

guidance [74]. 

Neural 

networks 

1. Modelling nonlinear and unstable aerodynamics during the design of 

future high-performance fighters and improving the angle of attack 

dynamics [14]; 

2. Flight aerodynamic parameters' estimation of longitudinal and 

transverse directional motion [122]; 

3. Cooperative attack for beyond-visual-range air combat [134]; 

4. Reconfigurable flight control systems in case of aerodynamic 

coefficients changes or control surfaces failure [107] 
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5. Detection, identification, and accommodation of sensor failures in a 

flight control system that assumes no physical redundancy in sensory 

capabilities [84] 

Ensemble 

learning 

1. Capability to break through air defence [141]; 

2. Aircraft reliability prediction based on selected parameters of its 

operation [65]; 

3. Targets (aircraft) classification using kinematic data only – ADS-B 

system [35]. 

 

Tab. 5 

Selected applications of ML algorithms – unsupervised learning 

 

UNSUPERVISED LEARNING 

Algorithm Selected applications 

Hierarchical 

Cluster 

Analysis 

1. Anomaly detection from numerical and text data to enhance flight safety 

[96]; 

2. Classification of aviation material consumption data [138]; 

3. Data-driven prediction method to estimate turbofan engine's remaining 

life [105]; 

4. Flight anomaly detection during the approach phase [104]; 

5. Classification of the environment during combat [131]. 

DBSCAN, 

HDBSCAN 

1. Flight anomaly detection during the approach phase [104]; 

2. Diagnostics of aircraft engine faults [9]; 

3. Detection of field data anomalies in automatic flight trajectories [124]; 

4. Identification of flight manoeuvres considering flight data recorder data 

[108]. 

Novelty and 

outlier 

detection  

1. Predictive maintenance, aircraft repair, and overhaul [5]; 

2. Accurate combat identification – locate and identify critical air targets 

as friendly, hostile, or neutral [146]; 

3. Track anomaly detection [126]; 

4. Anomalies detection in the approach and take-off phases [69]. 

Dimensionality 

reduction and 

visualization 

algorithms  

1. Target threat assessment in air combat [132, 133]; 

2. Assessment of air defence capabilities [141]; 

3. Air combat out of sight [135]; 

4. Situation assessment model and formation combat capability model in 

air combat [72]; 

5. Aircraft movement and position recognition[144]. 

Independent 

Components 

Analysis  

1. Air pressure measurement [10]; 

2. Flight dynamics and control effectiveness and missile guidance systems 

[148]; 

3. Analysis of data collected from sensors during flight to assess aircraft 

condition [102]; 

4. Radar target detection – objects background recognition in the airspace 

[36] 

k-means 

algorithm 

1. Classification of flights by manoeuvring conditions – analysis of human 

factors in aviation in the context of failure detection and identification 

[63]. 
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Apriori 

algorithm 

1. Diagnostics of overload events resulting from such phenomena as 

strong turbulence, crosswind, overspeed [30]; 

2. Aircraft control system [91]. 

Singular Value 

Decomposition 

1. Control actuator failures [8]; 

2. Fail-tolerant flight control system [26]; 

3. Aircraft engine health diagnostics [67]. 

 

Tab. 6 

Selected applications of ML algorithms – reinforcement learning 

 

REINFORCEMENT LEARNING 

Algorithm Selected applications 

Agent policy 1. Highly intelligent air combat strategies for autonomous air combat 

missions – potential-based reward shaping methods to improve the 

effectiveness of the air combat strategy generation algorithm [59]; 

2. Avoiding enemy threats and gaining an advantage over them in air 

combat [42]; 

3. UCAV (Unmanned Combat Aaerial Vehicle) air combat autonomous 

manoeuvre decision for one-on-one within visual range [62]. 

State value 

function 

1. Close air combat manoeuvre decision and taking a dominant position 

according to the opponent's strategy [78]; 

2. Value function matching in a continuous state space using agent 

autoantagonism in human-machine confrontation — tactical decision-

making to build a virtual AI pilot [43]. 

Q-learning and 

deep Q-

learning 

1. Independent decisions in air combat and effective decision-making 

policy in defeating the enemy [139]; 

2. UCAV decision-making in air combat [73]; 

3. Autonomous man-machine air combat system built from 3 subsystems: 

simulation of the air combat environment, simulation of manned aircraft 

operations, and a self-learning subsystem [15]; 

4. Air combat target assignment [75]; 

5. Stealthy engagement manoeuvring strategy [137]. 

Value function 1. Explicit risk mitigation in adversarial environments (aircraft and enemy 

missiles) using control barrier functions [103];  

2. Collision avoidance by unnamed ships in unknown environments [125]. 

Monte Carlo 

methods 

1. Manoeuvring decisions in short-range air combat [81]; 

2. UCAV fleet flight path planning [145]; 

3. Influence of UCAV agility on short-range air combat effectiveness 

[128]; 

Temporal 

Difference 

learning 

1. Real-time generation of intended flight paths for UAV in a complex air 

combat environment [13]; 

2. Autonomous behaviour – the use of intelligent agents that enable the 

aircraft to adapt to unexpected situations and analyse past experiences 

to increase future mission performance [93]; 

3. Intelligent systems that support system learning, control, and decision-

making [92]. 
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REINFORCE 

algorithm 

1. Multi-agent hierarchical policy gradient (MAHPG) algorithm capable 

of learning different strategies and moving beyond expert cognition 

through adversarial learning – air combat method for both defensive and 

offensive capabilities [111]; 

2. Autonomous air combat in sight [60]; 

3. Air combat strategies generation [61]; 

4. Maintaining of high-reliability target tracking in high-altitude dynamic 

3D scenarios – various real-time navigation tasks in a dynamic and 

random electronic warfare environment [143]; 

5. Deriving continuous and smooth control values to improve autonomous 

control accuracy – manoeuvring in aerial combat [140]. 

Combined 

algorithms 

1. Effectively selecting a favourable manoeuvre action and taking a 

dominant position according to the opponent's strategy of action in air 

combat – value function and Q-learning [78]; 

2. Intent prediction based on improved dual depth Q network (DDQN) for 

real-time generation (using temporal difference methods) of intended 

flight paths for UAVs in a complex air combat environment [13]. 

 

Tab. 7 

Selected applications of DL algorithms 

 

SUPERVISED OR DISCRIMINATIVE DEEP LEARNING 

Algorithm Selected applications 

Multilayer 

perceptron 

1. Real-time detection of the level of faults in a turbine engine disk [33]; 

2. Aircraft engine thrust control [142]; 

3. Predicting the time required to capture an enemy aircraft in a combat 

situation [110]. 

Convolutional 

neural network 

1. Aircraft target classification [77]; 

2. Adverse event precursor – Identification of factors relevant to an 

adverse event and their signatures that can be tracked during flight [7]; 

3. Terrain reconnaissance and warning system – low altitude flight [3]; 

4. Flight approach phases – risk prediction and decision support [66] 

Recurrent 

neural network 

1. Aircraft manoeuvres – determining aircraft position, heading, 

acceleration, and other information [32]; 

2. Aircraft engine vibration prediction [27]; 

3. Flight dynamics of a highly manoeuvrable aircraft [97]. 

UNSUPERVISED OR GENERATIVE DEEP LEARNING 

Generative 

adversarial 

network 

1. Trajectory planning [2]; 

2. Detection of dynamic obstacles in the air and on the runway – 

applications in a HUD (Head-Up Display) system [58]; 

3. Synthetic aperture radar for high-resolution images of stationary objects 

[100]. 

Autoencoder 1. Airspace tracking – detection and prediction of movement to indicate 

abnormal, dangerous situations in the airspace [115]; 

2. Aircraft complex system anomaly detection and classification [85]; 

3. Failure analysis of flight control actuators [52]; 

4. Aircraft design, dynamics, and control [25]. 
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Self-

organizing 

(Kohonen) 

map 

1. Condition assessment and diagnosis of a turbojet engine during 

operation using thermal imaging [4]; 

2. Measuring signals from aircraft sensors during flight [28]; 

3. Engine measurements based on variables such as core speed, oil 

pressure, and quantity, fan speed, etc., along with environmental 

variables such as external temperature, altitude, aircraft speed [16]. 

Restricted 

Boltzmann 

machine 

1. Inertial navigation system – error parameter estimation [39]; 

2. Predictive maintenance of an aircraft component [101]; 

3. Aircraft auxiliary power unit (APU) – performance sensing data 

prediction [74]. 

Deep belief 

network 

1. Fault detection in the aircraft fuel system [31]; 

2. Fault diagnosis of essential aircraft parts [54]; 

3. Identify hidden features responsible for system failure – particle filter 

in a turbofan engine [90]; 

4. Aircraft design, dynamics, and control [25]. 

HYBRID LEARNING 

Hybrid deep 

neural 

networks 

1. Impending failures' detection by predicting the future behavioural state 

of turbofan engines [95]; 

2. Planning of fuel consumption [119]. 

Deep transfer 

learning 

1. Target recognition using laser — real-time detection accuracy and speed 

[114]. 

Deep 

reinforcement 

learning 

1. The problem of intelligent decision-making in multi-aircraft 

cooperative air combat [106]; 

2. Control of the aircraft based on immediate observations of individual 

aircraft [55]; 

3. Strategy generation for manoeuvring in pursuit in air combat [129]; 

4. System of autonomously locating and navigating to an emitter and 

optically recognizing its associated vehicle [98]. 

 

Tab. 8 

Selected applications of fuzzy logic, evolutionary, and swarm intelligence algorithms 

 

Algorithms Selected applications 

Fuzzy logic 

(FL) 

1. Air combat attack algorithm consisting of navigation steps and 

reference velocity calculations [51]; 

2. Determining the optimal strategy for air combat at medium and long 

range. The parameters considered are: distance and azimuth position of 

the target, range, and projectile energy [118]; 

3. Increasing manoeuvring effectiveness in air combat [48]. 

Evolutionary 

(E) 

1. Making decisions regarding combat manoeuvres of unmanned aerial 

vehicles [136]; 

2. Assign weapons targets in a dynamic, uncertain air combat environment 

[49, 109]; 

3. Tactical combat against enemy formations — optimization of tactical 

attributes [82]; 

4. Searching for optimal partition resource parameters for minimum CPU 

utilization – time partitioning mechanism to reduce errors between 

avionics applications [40]. 
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Swarm 

intelligence 

(SI) 

4. Weapon-Target Assignment (WTA) and minimizing threats from those 

targets [47]; 

5. Multi-purpose air combat system – an autonomous control algorithm for 

multipurpose systems to improve the performance of UAVs in air 

combat [147]; 

6. Autonomous manoeuvre decision-making – autonomous manoeuvre 

strategy of UAV swarms in out-of-sight aerial combat [127]. 

 

The conducted literature review of algorithms (Tables 4-8) shows that it is possible to 

develop objectives for a future aircraft equipped with advanced Artificial Intelligence. 

Depending on conditions, it may support the pilot during a combat mission or perform the 

mission independently. 

 

 

4. POSSIBLE APPLICATIONS OF ARTIFICIAL INTELLIGENCE ALGORITHMS 

IN F-16 

 

In this subsection, assumptions are made for the F-16 aircraft as the baseline combat platform 

where a specific set of Artificial Intelligence algorithms can be applied. The reason for choosing 

the F-16 aircraft is a large number of in-service aircraft in the Air Force, which provides the 

necessary input to the algorithms. Moreover, important is the knowledge about the F-16 aircraft 

gathered during the operation, the manufacturer's knowledge about realized modifications, and 

laboratory tests conducted by DARPA. Table 9 presents a comparison of F-16 aircraft 

functionality with its systems equipped with artificial intelligence algorithms. Table 10 shows 

in detail which algorithms can be applied in a given case. During assigning algorithms, the 

abbreviations defined in Tables 2, 3, and 8 were used. 

 

Tab. 9 

A feature overview of F-16 aircraft systems regarding Artificial Intelligence algorithms, 

based on [68] 

 

Features 

F-16 systems 
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V
II

I.
 W
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p
o
n
s 

IX
. 
A

ir
fr

am
e 

1. Engine thrust x x x   x x  x 

2. Aerodynamics 

and flight 

mechanics 

x x x x  x x  x 

3. Communication 

(data transmission) 
 x   x  x   
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4. Systems 

activation 
x x x x x x x x x 

5. Systems 

monitoring 
x x x x x x x x x 

6. Providing 

intelligence 
 x     x   

7. Maintaining a 

safe distance: 

ground, objects on 

the ground, objects 

in the air 

x x x x  x x  x 

8. IFF 

(Identification 

friend or foe) / WE 

(electronic warfare) 

systems  

 x     x   

9. Navigation  x     x   

10. Target detection 

and identification 
 x     x   

11. Use of weapons  x x x x  x x x 

 

Tab. 10 

Assignment of algorithms to F-16 systems and features 

 

Features 

F-16 systems 
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o
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IX
. 

A
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fr
am
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1. Engine 

thrust 

HCS; 

DBSCAN

, HDB-

SCAN; 

NOD; 

ICA; 

SVD; 

MLP; 

SOM 

LinR; LogR; 

SVM; DT&RF; 

NBC; NN; HCS; 

DBSCAN, 

HDBSCAN; 

NOD; ICA; SVD; 

MLP; CVN; 

autoE; SOM; 

RBM; DBN; 

HDNN 

  

LinR; 

SVM; 

DT& 

RF; 

MLP; 

SOM; 

HDNN  

HCS; 

DBSCAN

, HDB-

SCAN; 

SVD; 

MLP; 

RNN; 

SOM; 

DBN; 

HDNN 

 

same as 

for 

system 

VII 

2. 

Aerodyna-

mics and 

flight 

mechanics 

NN; 

DT&RF; 

SVM; 

DBSCAN

, HDB-

SCAN; 

NOD; 

apriori; 

VF; MC; 

TD; 

REINF; 

LinR; 

SVM; 

DT&RF; 

NN; 

NOD; 

ICA; 

SVD; 

apriori; 

AP; SVF; 

VF; MC; 

TD; 

same 

as for 

syste

m I 

LinR; 

SVM; 

DT&RF; 

NN; 

DBSCAN

, HDB-

SCAN; 

ICA; 

apriori; 

AP; SVF; 

MC; TD; 

 

LinR; 

SVM; 

DT&R

F NN; 

NOD; 

apriori; 

VF; 

MC; 

TD; 

REINF; 

CA; 

same as 

for 

system II 

 

LinR; 

SVM; 

DT&RF 

NN; 

NOD; 

apriori; 

SVF; 

REINF; 

MLP; 

CVN; 

RNN; 
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CA; 

CVN; 

RNN; 

DRL; FL 

REINF; 

CA; 

RNN; 

DRL, FL; 

E; SI 

REINF; 

CA; 

CVN; 

RNN; 

GAN; 

autoE; 

RBN; 

DRL; FL 

RNN; 

DRL; 

FL 

autoE; 

SOM; 

RBM; 

HDNN 

3. 

Communi-

cation 

(data 

trans-

mission) 

 

LinR; 

LogR; 

SVM; 

DT&RF; 

NBC; k-

m S; NN; 

D-R&V; 

SVD; 

MLP; 

CVN; 

GAN 

  

same 

as for 

syste

m II 

 
same as 

for 

system II 

  

4. Systems 

activation 
NN; EL; AP; SVF; QL&DQL; VF; TD; REINF; CA; MLP; RNN; DRL; FL; E; SI 

5. Systems 

monitorin

g 

supervised ML – all algorithms; unsupervised ML – all algorithms; 

supervised or discriminative DL  – all algorithms; autoE; SOM; DBN, 

HDNN 

SVM; 

DT&RF; 

NBC; NN; 

EL; 

unsupervise

d ML– all 

algorithms; 

MLP; CVN; 

autoE; 

DTL; DRL; 

FL; E; SI 

LinR; 

LogR; 

SVM; 

NBC; 

NN; EL; 

HCS; 

NOD; 

ICA; 

SVD; 

MLP; 

CVN; 

autoE; 

SOM; 

DBN; 

hybrid 

learning – 

all 

algorithm

s 

6. 

Providing 

intelligenc

e 

 

SVM; 

DT&RF; 

k-m S; 

EL; 

NOD; D-

R&V; 

ICA; QL 

&DQL; 

TD; 

REINF; 

CA; 

CVN; 

GAN; 

autoE; 

DTL; 

DRL 

    
same as 

for 

system II 
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7. 

Maintainin

g a safe 

distance: 

ground, 

objects on 

the ground, 

objects in 

the air 

SVM; DT&RF; NBC; k-m S; NN; EL; 

HCS; DBSCAN, HDBSCAN; NOD; D-

R&V; k-m U; apriori; reinforcement ML 

– all algorithms; CVN; RNN; GAN; 

autoE; RBM; DTL; DRL; FL; E; SI 

 
same as for 

systems  

I-IV 

 

same as 

for 

systems 

 I-IV  

8. IFF 

(Identifica-

tion friend 

or foe) / 

WE 

(electronic 

warfare) 

systems  

 

SVM; 

DT&RF; 

NBC; k-m 

S; NOD; 

D-R&V; 

ICA; QL& 

DQL; 

GAN; 

autoE; 

DRL  

    
same as 

for 

system II 

  

9. 

Naviagatio

n 

 

LinR; 

CVM; 

DT&RF; 

k-m S; 

NN; 

DBSCAN; 

HDB-

SCAN; 

NOD; D-

R&V; 

ICA;  

apriori; 

AP; 

QL&DQL

; MC; TD; 

REINF; 

CA; MLP; 

CVN; 

RNN; 

GAN; 

autoE; 

RBM; 

HDNN; 

DRL; FL; 

E; SI  

    
same as 

for 

system II 

  

10. Target 

detection 

and 

identifica-

tion 

 

SVM; 

DT&RF; 

NBC; NN; 

EL; HCS; 

D-R&V; 

ICA; AP; 

SVF; 

QL&DQL

; REINF; 

CA; MLP; 

CVN; 

DTL; 

DRL; FL; 

E; SI 

    
same as 

for 

system II 
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11. Use of 

weapons 

 

SVM; DT&RF; NBC; NN; EL; HCS; 

NOD; D-R&V; ICA; reinforcement 

ML – all algorithms; MLP; CVN; 

DTL; DRL; FL; E; SI 

 

same as 

for 

systems  

II - V 

SVM; DT& 

RF; NBC; 

NN; EL; 

HCS; 

NOD; D-

R&V; ICA; 

QL& DQL; 

REINF; 

CVN; DTL; 

FL; E; SI 

same as 

for 

systems 

 II - V 

 

Based on the compiled list of AI algorithms for the F-16 aircraft, a matrix analysis was 

performed – an analysis of the columns representing the systems of the F-16 aircraft and the 

rows representing the features. The main results of the analysis are as follows: 

- Systems such as avionics and digital equipment, electrical and electronic installation are 

critical infrastructures. AI algorithms of these systems play an important role in every 

functionality of the F-16 aircraft. Both systems are interrelated and their reliability in 

individual functionalities is critical in the operation of the F-16 aircraft, for example: 

failure of any component of the electrical or electronic installation will prevent the 

correct operation of an algorithm responsible for specific functionality (feature). In turn, 

the malfunction of an algorithm from the area of avionics and digital equipment can also 

lead to the malfunction of a specific functionality leading to damage to a component of 

the electrical and electronic system, e.g.: the activation value set incorrectly by the 

algorithm for a given component may result in exceeding safe limits in the electrical or 

electronic installation. 

- The systems activation and systems monitoring features, together with AI algorithms, 

are critical to the reliability and operation of all systems on the F-16 aircraft. For the 

systems' activation functionality, machine learning algorithms from the reinforcement 

learning group are particularly relevant, in turn, for the deep learning case, algorithms 

from the supervised deep Learning group. Fuzzy logic, evolutionary, and swarm 

intelligence are also applicable. In the case of the system's monitoring functionality, all 

supervised and unsupervised machine learning algorithms are distinguished, as well as 

all deep learning supervised or discriminative algorithms. They apply to systems such 

as power units, electrical and electronic installations, Hydraulic systems / servo drives, 

control systems, safety systems, fuel systems, avionics, and digital equipment. It should 

be noted that the two functionalities are interrelated. The algorithms responsible for 

monitoring enable the algorithms responsible for activating the systems to work 

properly. 

- Functionalities such as aerodynamics and flight mechanics, maintaining a safe distance: 

the ground, objects on the ground, and objects in the air play a key role in the 

compilation. These features are associated with 7 of the 9 systems equipped with AI 

algorithms. In the case of the “aerodynamics and flight mechanics” functionality, such 

reinforcement learning algorithms in the respective systems can be distinguished: value 

function, Monte Carlo method, Time difference learning, REINFORCE, and combined 

algorithms. Supervised and unsupervised machine learning algorithms also play an 

important role. In turn, in the group of deep learning algorithms such as convolutional 

neural networks and recurrent neural networks. Fuzzy logic algorithms are also 

applicable. On the other hand, for the functionality of maintaining a safe distance, all 

the algorithms of reinforcement machine learning are applicable. For deep learning, all 

algorithms of supervised deep learning are applicable. Fuzzy logic, evolutionary, and 
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swarm intelligence are also applicable. It should be noted that the two functionalities 

are interrelated. In particular, the correct simultaneous operation of algorithms in the 

systems for these two functionalities is important in situations such as flight in formation 

and also close or medium-range combat.  

- In the use of weapons functionality, all reinforcement machine learning algorithms 

stand out but also selected supervised machine learning algorithms like: Support-Vector 

Machines, decision trees, and random forests, naive Bayes classifiers, neural networks. 

Among unsupervised machine learning algorithms, the following stand out: 

Hierarchical Cluster Analysis, novelty and outlier detection algorithms, visualization 

and dimensionality-reduction and visualization algorithms, and Independent 

Components Analysis algorithm. Fuzzy logic, evolutionary, and swarm intelligence 

algorithms are also applied.  

 

It is important to note that for a given functionality in comparison to a given system, there 

is a significant number of applications of different AI algorithms. This raises the question of 

which algorithms to choose. A suggestion could be a modular application, which involves the 

creation of sets and within them subsets of detailed algorithms for a given functionality within 

a given system. Another solution could be the wider use of combined algorithms within 

supervised machine learning, as well as unsupervised machine learning algorithms, combined 

algorithms within reinforcement machine learning, and hybrid deep learning networks. The area 

of the above applications requires further research in the near future.    

 

 

5. DISCUSSION 

 

The developed compilation of functions with systems equipped with machine learning, deep 

learning, fuzzy logic, evolutionary, and swarm intelligence made it possible to obtain a 

comprehensive view of the possible directions of research and development of the F-16 aircraft. 

The results of the analysis based on the compilation indicated the outstanding features and 

systems that will be critical for the reliability and operation of the F-16 aircraft equipped with 

artificial intelligence algorithms. Table 9 also allows determining the progress of research work 

on aircraft equipped with artificial intelligence algorithms. An important role is played by 

sensitivity analysis of AI algorithms, which allows us to determine the relevance of the data 

feeding into the algorithms and also minimizes the probability of the algorithms making 

incorrect decisions. This is particularly crucial in the case of aircraft designed for specific 

missions, such as assault operation. The authors plan to develop these matters in future research. 

The matrix analysis prepared in this research enables an in-depth assessment of the 

application of artificial intelligence algorithms in specific cases. Presented below is one such 

example. So far, under DARPA's Air Combat Evolution (ACE) program, simulation tests of 

AlphaDogfigh in a laboratory environment (without real-world combat) were conducted. In this 

case, the AI agent algorithm which can quickly and effectively learn basic fighter manoeuvres 

and successfully employ them in a simulated dogfight was relevant here [22]. In December 

2022, DARPA ACE algorithm developers installed their AI software onto a modified F-16 test 

aircraft called the X-62A or VISTA at the Air Force Test Pilot School in California. Over 

several days, they conducted multiple flights, showcasing the AI's capability to control a full-

scale fighter jet and provide invaluable live-flight data [23]. According to the matrix analysis 

in this research, it enables such actions as: highly intelligent air combat strategies enabling 

autonomous execution of combat missions in the air, avoiding threats from the enemy, and 
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gaining an advantage over the enemy in air combat. It can also be concluded that this algorithm 

belongs to the functionality responsible for “systems activation”.  Moreover, this algorithm has 

an overriding function in the reliability and operation of an AI-equipped aircraft. However, 

there is no information in the DARPA reports that would indicate what are the algorithms with 

which the other systems are equipped. Based on our research, it can be concluded that this 

algorithm is certainly supported by a group of “systems monitoring” functionality algorithms. 

In turn, individual systems could be equipped with selected algorithms that are indicated in the 

compilation. 

 

 

6. CONCLUSIONS 

 

The presented compilation and analyses of the systems equipped with AI algorithms 

functions make it possible to develop objectives for the design structure to modify the F-16 

aircraft. It is also possible to use this compilation for other military aircraft such as F-18, Rafael, 

Eurofighter Typhoon, and after completing the compilation with the features and systems of 

“STEALTH” technology also aircraft such as the F-22, and F-35. The overview can also be 

supplemented or detailed in the area of features and systems for aircraft versions whose tasks 

focus on assault missions, e.g.: tasks related to the neutralization of air defence systems, attack 

on moving columns of armoured warfare, attack on surface or underwater targets or electronic 

warfare missions. The compilation can also be a base for mapping future applications of AI 

algorithms in military aircraft, as well as for developing new AI algorithms.  

It should also not be forgotten that when looking for solutions using artificial intelligence 

methods for aviation-related tasks, you can be supported by solutions designed for other fields 

of science. For example, when looking for non-invasive methods of diagnosing the condition 

of an internal combustion engine, you can obtain knowledge from articles about the automotive 

industry [17-20]. 

Based on this study, the following directions of research and development work can be 

indicated: 

- development of dedicated ensemble learning methods based on machine learning 

algorithms or deep learning algorithms for the F-16 aircraft, 

- development of sets of algorithms and their subsets for individual systems of the F-16 

aircraft, 

- development of hybrid learning algorithms in the area of deep learning for F-16 aircraft 

systems, 

- development of AI algorithm configurations for dedicated variants of the F-16 aircraft 

(fighter, attack), 

- advanced research on the application of reinforcement machine learning algorithms 

within the “systems activation” functionality in relation to the AI algorithms used in the 

systems for each functionality, 

- advanced research in the area of “avionics and digital equipment” and “electrical and 

electronic installation” systems in relation to data sources that feed artificial intelligence 

algorithms, 

- research and development studies regarding applications of artificial intelligence in 

relation to aerodynamics, flight mechanics, and maintaining a safe distance, 

- development of applications of AI algorithms in weapon systems (short, medium, and 

long-range combat), 

- research in the area of cybersecurity of aircraft equipped with AI algorithms, 
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- research and development studies in the area of pilot cooperation with artificial 

intelligence algorithms, e.g.: pilot surveillance of AI-controlled distributed UAVs or AI 

support of the pilot. 

 

The compilation presented in the article including analyses of functions and systems 

equipped with AI algorithms can also be used for modifications in the area of material and 

structure strength of the F-16 aircraft.   
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