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NOVEL ACCESSIBILITY METRICS BASED ON HIERARCHICAL 

DECOMPOSITION OF TRANSPORT NETWORKS 
 

Summary. Scientific analysis of public transport systems at the urban, regional, 

and national levels is vital in this contemporary, highly connected world. 

Quantifying the accessibility of nodes (locations) in a transport network is 

considered a holistic measure of transportation and land use and an important 

research area. In recent years, complex networks have been employed for modeling 

and analyzing the topology of transport systems and services networks. However, 

the design of network hierarchy-based accessibility measures has not been fully 

explored in transport research. Thus, we propose a set of three novel accessibility 

metrics based on the k-core decomposition of the transport network. Core-based 

accessibility metrics leverage the network topology by eliciting the hierarchy while 

accommodating variations like travel cost, travel time, distance, and frequency of 

service as edge weights. The proposed metrics quantify the accessibility of nodes 

at different geographical scales, ranging from local to global. We use these metrics 

to compute the accessibility of geographical locations connected by air transport 

services in India. Finally, we show that the measures are responsive to changes in 
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the topology of the transport network by analyzing the changes in accessibility for 

the domestic air services network for both pre-covid and post-covid times. 

Keywords: integral accessibility, network topology, weighted networks, k-core 

decomposition, eigenvector centrality, airlines network 

 

 

1. INTRODUCTION 

 

Accessibility research has rapidly progressed in the last two decades [1-3]. However, 

implementation of most of the proposed accessibility metrics is limited in practice, facing 

challenges in their adoption [4-5]. Levine gives a critical review of the views that present 

obstacles in the practical implementation of accessibility metrics [6]. 

Traditionally, accessibility has been defined as the ease of reaching services, goods, 

activities, or destinations. Hansen introduced accessibility as the potential opportunity for 

interaction [7]. Since then, a plethora of accessibility definitions have been advanced in 

seminal papers [8-10]. Ingram defines accessibility as ”capable of being reached”, thus 

alluding to it as a measure of proximity between two geographical locations [9]. Koenig 

asserts that accessibility is associated not only with reaching the destination but also with the 

quality and availability of service provided by the available transport network [8]. Geurs and 

Van Wee describe the accessibility of a location as a reflection of the spatial organization and 

quality of the transport system that enables an individual’s connectivity to the location [3]. 

Given diverse definitions, accessibility is often assessed by considering the measures that 

evaluate the availability and quality of a transport service. Accessibility can either be relative 

or integral. The categorization is based on the degree of connectivity of the location with 

another location or all possible locations in the network. Relative accessibility is asymmetric, 

yet it is the simplest measure of accessibility. Integral accessibility of a location is the 

aggregation of its relative accessibility to all other locations in the network. Koenig 

highlighted two dimensions for studying accessibility in transport networks, namely transport 

services and activity [8]. The ease of traveling from one location to another in terms of 

distance, time, or cost reflects the transport service dimension of accessibility. Activity 

dimension, on the other hand, is measured in terms of distribution and amount of attractive 

activities at a location, including stores, offices, residences, etc. Handy distinguished between 

local and regional accessibility based on the distance between a given location and activity 

[11]. 

Geurs and Van Wee classified accessibility measures into four categories based on 

location, utility, people, and infrastructure [3]. Location-based measures describe the level of 

accessibility to spatially distributed specific activities (for example, jobs within a particular 

region) [12, 13]. Utility-based measures typically incorporate individual traveler preferences 

and activities at a location for quantifying accessibility. Hellervik et al. considered such 

activities as attractor variables for quantifying accessibility [14]. People-based measures 

consider people’s behavior by focusing on their space and time and the use of places based 

on the activities they are interested in [15]. Infrastructure-based measures use travel speed 

and level of congestion between pairs of locations to quantify accessibility between them 

[16].  

Handy argued that in addition to the abovementioned measures, one should focus on the 

reachability of location and not on the means to reach it while quantifying accessibility [17]. 

Affirming the argument, Wu and Levinson emphasized that distance between locations is 
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nonexistent unless they are connected by a network and invigorates the study of accessibility 

measures based on the topology of the transport network [1]. 

It is well established that network topology augments transport and activity dimension and 

provides a holistic picture of the accessibility of a geographic location. It defines the physical 

connectivity between two geographical locations and is known to influence accessibility 

significantly [18-20]. Hierarchy is a well-recognized topological characteristic that reveals 

the organization of a network. However, its potential has been recently realized for the 

analysis of transport networks[21-24]. 

 

1.1 Motivation and contribution 

 

According to Koenig, transport services and activities are the two dimensions of transport 

networks [8]. We advocate the study of accessibility measures in transport networks along 

the third dimension, that is, network topology. Our argument is grounded on several existing 

studies emphasizing that connectivity in transport networks influences accessibility [1, 19, 

20]. We advance this view further and assert that the accessibility of a geographic location is 

additionally impacted by its position in the hierarchical decomposition of the transport 

network. 

We propose novel accessibility metrics based on an inherent hierarchy of nodes in the 

network topology revealed by k −core decomposition. Since the algorithm for k -core 

decomposition is linear in the number of edges, accessibility for large networks (for example, 

nationwide, continent-wide or global transport networks) can be computed efficiently. The 

measures are flexible and proficient at capturing the combined effect of opportunities and 

reachability. They can also accommodate attributes like travel cost, travel time, distance, 

frequency of service, etc., that arise naturally in the analysis of transport networks. These 

attributes can be assigned as edge weights in the network to yield an objective accessibility 

metric. When new services are added or existing ones are withdrawn, the accessibility of 

nodes is impacted. The proposed metrics are responsive to changes in the topology of the 

transport network. 

The proposed core-based accessibility measures consider the density of connections in the 

immediate neighborhood, two-hop neighborhood, that is, region, and the entire network. The 

intuition that density-differential of transport connections for a geographical location is an 

essential determinant of accessibility is well captured by core-based accessibility metrics. To 

the best of the authors’ knowledge, this is the first attempt to design accessibility metrics that 

can be computed and interpreted at multiple granularity levels while exploring the topological 

hierarchy of the transport network. 

The rest of the paper is organized as follows. Section 2 presents the background, explains 

the k -core decomposition of a complex network, and graph-theoretic measures related to 

accessibility research. Then in Section 3, we propose and explain the core-based accessibility 

measures. We present applications of the proposed accessibility measures on the test network 

in Section 4 and a case study to compare the accessibility of Indian airports connected by 

domestic airlines in the pre-covid and post-covid times in Section 5. Finally, we conclude the 

paper. 
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2. BACKGROUND AND RELATED WORKS 

 

Recently, complex networks have attracted serious attention for the analysis of urban and 

national level public transport systems. A complex network is an abstract mathematical 

structure ( , )G V E , where V is the set of nodes and E V V   is the set of edges. There 

exists an edge ije E  between ,i jv v V , if and only if they are directly related. The definition 

of relation is specific to the application. The network is represented by an adjacency matrix 

v vW  , where 1ijw  if ije E , else 0ijw  . In case the relation between two nodes is 

directional, the adjacency matrix v vW  is asymmetric. Further, if the strength of the relation is 

quantified, ijw denotes the weight of the edge ije . Unless specified, we assume a network to 

be undirected and unweighted. 

Example 1: We model the transport system as a simple, weighted and undirected toy network 

( , )G V E , as shown in Fig. 1, where 0 1 2 10( { , , ...., })V v v v v  is the set of 11 geographical 

locations. The edge weight ijw  represents the connection strength between iv  and jv

(distance, time to travel, or cost of travel etc.). Tab. 1 shows the weighted and symmetric 

adjacency matrix W  for G .  

 

 
 

Fig. 1. Toy transport network G  with 11 nodes and 15 edges 

 

Tab. 1 

Weighted adjacency matrix for toy network G  in Fig. 1 

Node 0v  1v  2v  3v  4v  5v  6v  7v  8v  9v  10v  

0v  0 0 0 0 8 0 0 0 0 0 0 

1v  0 0 10 7 4 4 0 12 0 0 0 

2v  0 10 0 11 3 0 0 3 0 0 0 

3v  0 7 11 0 7 0 2 0 0 4 0 

4v  8 4 3 7 0 17 0 0 0 0 0 

5v  0 4 0 0 17 0 0 0 0 0 0 

6v  0 0 0 2 0 0 0 0 0 0 0 
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2.1 Topology-based accessibility measures  

 

The topology of a network reveals the patterns of connectivity between geographical 

locations. Researchers have employed degree, closeness and betweenness centrality measures 

to quantify the accessibility in transport networks [19, 20, 25-27]. 

Degree has been used to determine important nodes in transport networks [26]. Since the 

degree is a local property of the node, it indicates connectivity in the immediate neighborhood 

of a geographical location. However, it may not be an accurate predictor of accessibility as it 

does not indicate the extent of connectivity of neighbor nodes. For instance, in Fig. 1, nodes

5v and 8v have the same degree but 5v is more accessible due to its connections with better 

connected nodes ( 1v and 4v ) in the network than 8v . 

Closeness centrality of a node is calculated as the reciprocal of the sum of the shortest path 

length from node iv  to other nodes in the network, as given below. 

 

                     ( )

1

( , )
i

j V G

C
d i j






               (1) 

 

The measure indicates the importance of a node by quantifying its closeness to other nodes 

in the network. Nodes with higher scores are easier to reach than other nodes in the network 

and thus reflect higher accessibility.  

Betweenness centrality measures the extent to which a node lies on paths between other 

nodes. It is computed as the sum of the fraction of shortest paths between all pairs of nodes 

passing through vi, as shown below. 

 

                                                            ( )

( )st
i

s i t V G st

i
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
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                                                       (2) 

 

Here, ( )st i  is the number of the shortest paths between the nodes passing through node iv , 

and st is the number of paths between nodes sv  and tv  in the network. 

Betweenness centrality is useful to identify nodes that serve as a bridge or transfer points to 

other nodes in the network. Removal of these nodes from the network may disrupt reachability. 

Betweenness centrality is augmented with other measurable attributes of the geographical 

location to quantify betweenness-accessibility [27]. Betweenness centrality of terminal nodes 

is zero, due to which the betweenness-accessibility of such nodes may be zero. 

  

7v  0 12 3 0 0 0 0 0 7 0 0 

8v  0 0 0 0 0 0 0 7 0 0 5 

9v  0 0 0 4 0 0 0 0 0 0 0 

10v  0 0 0 0 0 0 0 0 5 0 0 



144 D. Kwatra, K. Ramachandra Rao, V. Bhatnagar 

 

2.2 Hierarchical decomposition: preliminaries 

  

Complex networks can be decomposed into a hierarchy of sub-networks based on the 

connectivity of nodes, such that the densest sub-network is at the top. Hierarchy is recognized 

as an important principle of organization in complex networks and is observed in all real-life 

networks [28]. Examples of hierarchy span from social networks [[29], [30]], biological 

networks [31, 32], technological networks [33], and urban systems [34] to transport networks  

[22-27], [35]. We unravel the hierarchy of nodes (geographical locations) using the k -core 

decomposition to quantify their accessibility. 

Seidman proposed the k -core method to decompose a complex network G  into a 

hierarchy of maximally connected sub-networks [36]. The decomposition gives rise to a 

laminar family such that 1 1 0.....k kG G G G G     . Here, kG  is the sub-network 

induced by the nodes with core values greater than or equal to i . Seidman defines the k -core 

decomposition of a network as follows [36]. 

Definition 1: k -core: Given a simple, undirected, unweighted network ( , )G V E , k -

core is the largest sub-network ( , )k k kG V E  of G  induced by the subset of nodes kV V  

and k k kE V V  , if and only if the degree of each node in kV  is greater than or equal to k . 

Thus, coreness of a node u  is defined as: 

 

                                                      
( ) { : ( ) }kcore u k u V deg u k   

                                    (3) 

 

The k -core of G  is obtained by recursively removing all nodes with degrees less than k  

until the remaining nodes in the network have degrees at least k . It is established that the k
-core of a network is unique and connected [37]. 

Batagelj and Zaversnik proposed a linear time algorithm for k -core decomposition [38], 

which makes it very attractive for analyzing large sparse networks common in diverse 

domains. The algorithm is available in well-known R4 and Python5 packages. 

Example 2: Fig. 2 shows the k -core decomposition of the toy network G shown in Fig. 

1. The k -core sub-networks are extracted through a peeling process. As minimum degree of 

the nodes is one, core value 1k   is assigned to the nodes 
0 6 9 10( , , , )v v v v , and they are removed 

from the network. Removal of node 10v  reduces the degree of 8v  to one and hence 8v  is also 

assigned core value 1. Next, nodes with degree 2 are assigned the core value 2 and are 

removed from the network 5 7( , )v v . Proceeding in this way, nodes with degree 3 are assigned 

the core value 3 1 2 3 4( , , , )v v v v . After removing these nodes, we get a null network. Thus, we 

have maximum core value 3maxk   for G . 

 

                                                 
4 igraph library (https://igraph.org/r/). 
5 NetworkX package (https://networkx.org/). 
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Fig. 2. Core decomposition of the toy network shown in Fig. 1  

reveals three level hierarchy (ovals) in the network.  

Nodes marked in the same color have the same core value 

 

2.3 Hierarchical decomposition of transport network 

 

The emergence of hierarchy in transport networks is well documented by Yerra and 

Levinson [39]. Boguna et al. argued that the core of a network plays a significant role in 

enhancing the navigability of networks [40]. Wuellner et al. used core decomposition to 

analyze the seven largest airlines in the US [41]. They observed that nodes belonging to the 

highest k-core are the hub nodes and the most viable transfer points [41]. Thus, the authors 

concluded that nodes with higher core values are more resilient to attacks on nodes and edges 

of a network. Azimi-Tafreshi et al. used k-core decomposition to compare the topological 

structures of various low-cost and major airlines in the country [35]. 

Du et al. decomposed the Chinese airlines network into three layers: core, bridge, and 

periphery [22]. They concluded that the core layer is densely connected and sustains the 

maximum flow of flights connecting airports of capital cities. And the bridge layer consists 

of airports that connects two other layers. Further, the periphery layer is sparsely connected 

and sustains little flight flow connecting airports in remote areas. Dai et al. explored the 

evolution of the topological and multilayered structure of the Southeast Asian air transport 

network from 1979 to 2012 [23]. They decomposed the network into three layers based on 

the k-core values of the nodes. The periphery layer has nodes with core value one, the core 

layer has nodes with the maximum core value, and the bridge layer has nodes with 

intermediate core values. The authors concluded that the multilayered structure of the 

Southeast Asian air network has significantly evolved and is less mature and integrated than 

its EU counterpart. 

 

 

3. HIERARCHY-BASED ACCESSIBILITY METRICS 

 

We propose to use the core decomposition of a network to quantify the accessibility of 

nodes in the transport network, advancing the ideas proposed in [22], [35], [40], [41]. 

The underlying intuition is that better-connected nodes in higher cores of the network are 
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more advantaged. Existing topology-based accessibility measures (Betweenness accessibility 

[27]) do not acknowledge the advantage that accrues due to linkage with better accessible 

nodes. Hence, we propose three novel core-based accessibility metrics for unweighted and 

weighted networks in this section. 

 

3.1 Accessibility metrics for unweighted networks 

 

We define and introduce the mathematical formulations for the proposed three topology-

based metrics for unweighted networks, highlighting the role of connectivity in quantifying 

the accessibility of nodes in transport networks. 

 

A. Core Accessibility 

Core accessibility is a measure that provides a snapshot of similar connectivity patterns of 

nodes in the network. A node with core value k is connected to at least k  similarly connected 

nodes. Thus, the core value gives a lower bound to the connectivity of a node. 

Definition 2: Core Accessibility (CA): Given a simple, unweighted and undirected network

( , )G V E , core accessibility ( )u of a node u V is defined as the core value of u in core 

decomposition of G . 

 

                                                      
( ), ( )u core u u V G   

                                                 (4) 

 

Core accessibility partitions the network into multiple layers (levels), generalizing the 

three-layered representation suggested by [22]. Maximum core accessibility in the network 

indicates the levels of hierarchy in the network. Accordingly, it can be used to compare 

navigability in the network as suggested in [40]. Since core accessibility indicates minimum 

connectivity, it groups multiple locations at the same hierarchical level. Consequently, core 

accessibility is a coarse metric (Section 4). We define below an advanced metric for 

perceptive comparison of accessibility of geographic locations at the regional level. 

 

B. Local Core Accessibility 

Connectivity in the immediate neighborhood of the node plays an influential role in 

determining its accessibility at the local level. Since the accessibility of a node (location) is 

impacted by that of its neighbors, a node stands to gain an advantage if it is connected to 

neighbor nodes with higher accessibility. Local core accessibility measure considers the 

density of connections in the two-hop neighborhood of a node by giving due consideration to 

the core accessibility of all its neighbors. 

Definition 3: Local Core Accessibility (LCA): Given a simple, unweighted and undirected 

network ( , )G V E , local core accessibility ( )u of node u V  is defined as the sum of the 

core accessibility values of neighbor nodes of u . 

 

                                                           ( )

( )u

v N u

v 


 
                                                               (5) 

 

Here, ( )N u  denotes the set of neighbors of u . Local core accessibility serves as a metric 

for quantifying regional accessibility of geographical locations. Aggregating core 

accessibility of neighbors empowers the LCA to expose finer differences in the accessibility 
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of geographical locations within a region. Hence, it is particularly useful in discriminating 

between the local accessibility of nodes with same core accessibility.  

 

C. Network-wide Core Accessibility 

Intuitively, the accessibility of a node at the global level is affected by the accessibility of 

its neighbors, which in turn are impacted by the accessibility of their neighbors, and so on. 

The nodes connected to neighbors with higher regional accessibility are advantaged compared 

to those with neighbors having lower regional accessibility. This intuition is captured by the 

Eigen Vector centrality6 of a node in a network which quantifies the importance of a node 

recursively while considering the topology of the network [42]. 

Network-wide core accessibility quantifies the accessibility of a node at the global level 

and is computed recursively by considering the local core accessibility of its neighbors. 

Consider matrix v vL that consolidates local core accessibility of all pairs of nodes in G  as 

follows. 

 

                                                    

, ( , ) ( )

0,

v

uv

u v E G
l

otherwise

 
 
                                                 (6) 

 

Element uvl  in L connotes the accessibility advantage that node u gets because of node v . 

It is noteworthy that for a node pair ( , )u v , the accessibility advantage for u from v  may be 

different from that for v  from u . The difference arises due to the variation in their respective 

neighborhood networks. Retention of the accessibility differences among nodes due to their 

location in the overall topology of the network renders matrix L asymmetric. Lack of 

symmetry also empowers matrix L to expose subtle differences between the accessibility of 

nodes while considering their position in the hierarchy prevalent in the network. Example 3 

in Appendix D demonstrates the construction of matrix L for the toy network given in Fig. 

1. 

L can be considered an adjacency matrix of a weighted and directed graph with n  nodes 

at an abstract level. Eigenvector centrality of the nodes in this network connotes network-

wide core accessibility. Let vector η  of size n  denote the network-wide core accessibility of 

all nodes in G . We initialize η  to all ones assuming that all nodes are initially equally 

accessible over the entire transport network. Subsequently, network-wide accessibility of all 

nodes is computed iteratively using L (Definition 4). 

Definition 4: Network-wide Core Accessibility (NCA): Let L be the matrix of pairwise 

local core accessibility values as computed in Equation (6). Network-wide accessibility v , 

of a node ( )v V G  is computed iteratively as: 

 

                                                                          

.v vu

u

l  η

                                                    
(7) 

until η  converges. 

 

 

                                                 
6 See Appendix C for formal definition and example. 
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NCA provides a global (network-wide) view of the accessibility of locations and thus can 

be classified as an Integral accessibility measure as defined by Ingram [9]. Further, NCA is 

more discerning than LCA because it ensconces the location of the node in the overall 

topology of the network. 

We present applications of core-based accessibility measures for unweighted transport 

networks in Section 4. 

 

3.2 Accessibility metrics for weighted networks 

 

Accessibility measures proposed in the previous sub-section highlight the role of 

connectivity in quantifying the accessibility of nodes in transport networks. However, these 

measures ignore several important aspects of real-world transport networks like the cost of 

travel, transport capacity, travel time, distance, transport modes, service frequencies, etc. 

These attributes of connectivity between two nodes can be naturally modeled as edge weights 

in the transport network and have a substantial impact on the quantitative assessment of the 

accessibility of locations. 

Given a simple, undirected and weighted network ( , , )G V E W , where W  is the weight 

matrix representing the weight of edges, as per the attribute(s) chosen for study. Matrix W
could represent any of the attributes of connectivity mentioned above or a function of these 

attributes. For example, a product of travel cost and capacity denotes revenue earned by the 

services company. Weighted degree ( )u of node u  is the sum of weights of edges incident 

on it. Normalized weighted degree of u  ˆ( )u is defined as follows. 

 

                                                             ( )

ˆ u
u

v

v V G










                                                               (8) 

 

Please note that isolated nodes in the network have normalized weighted degree zero.  

Abiding by the fact that the weights of the edges impact the accessibility of nodes, it is 

now feasible to differentiate their accessibility considering their normalized weighted degree. 

We, thus, extend the definitions of the three accessibility indicators given in Section 3.1 to 

propose their weighted versions, namely weighted core accessibility, weighted local core 

accessibility, and weighted network-wide core accessibility. 

Definition 5: Weighted Core Accessibility (wCA) ˆ( )u of a node ( )u V G  is defined as 

the product of its normalized weighted degree ( ˆ
u ) and its core accessibility. 

 

                                                                     
ˆ ˆ .u u u  

                                                            (9) 

 

Definition 6: Weighted Local Core Accessibility (wLCA) ˆ( )u  of a node ( )u V G  is 

defined as the product of its normalized weighted degree and its local core accessibility.  

 

                                                                  
ˆ ˆ .u u u  

                                                             (10) 
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Definition 7: Weighted Network-wide Core Accessibility (wNCA) ˆ( )u of a node u ∈ V (G) 

is defined as the product of its normalized weighted degree and its network-wide core 

accessibility. 

 

                                                             
ˆ ˆ .u u u  

                                                       (11) 

 

We present a case study in Section 5 to demonstrate the advantages of the proposed 

weighted metrics. 

 

 

4. APPLICATION OF CORE-BASED ACCESSIBILITY METRICS FOR 

UNWEIGHTED NETWORK 

 

We consider an unweighted and undirected test network of domestic air connectivity by Air 

India between 36 states and union territories of India that are coded7 with two letters. Two states 

are connected if and only if two cities in the states are connected by a flight. We compute the 

proposed core-based accessibility metrics for this network, rank the nodes, and explain the 

significance of each metric. 

The k-core decomposition of the test network unfolds the hierarchy that provides insight into 

the different layers contributing to the network connectivity (Błąd! Nie można odnaleźć 

źródła odwołania.). Nodes with higher core values ( k  = 5, cyan blue) belong to denser regions 

of the network compared to those in lower cores. Edges marked in black connect the nodes in 

the same core, and edges marked in blue connect the nodes in different cores. Node SK is 

disconnected in the network as no Air India flight is connecting it to any state8, and hence its 

core value is zero in this network. Throughout this paper, we use this test network to explain 

the relevant concepts and measures.  

 

4.1 Comparing core accessibility 

 

Based on the premise that the position of a node in the hierarchical decomposition of the 

network determines its accessibility in the network, we compare the accessibility of different 

Indian states and union territories serviced by Air India. We compare the core accessibility 

of locations in the transport network shown in Błąd! Nie można odnaleźć źródła odwołania.. 

Core decomposition of the network reveals five levels of hierarchy, indicating that states can 

be ranked from 1 to 5 based on their connectivity patterns. Nodes belonging to highest core 

are ranked one and have maximum core accessibility in the network. Tab. 2 shows the ranks 

of connected nodes in the test network. 

Limitations of Core Accessibility: As evident in Tab. 2, core accessibility (CA) bunches 

multiple locations together and assigns the same rank to them. In other words, it cannot 

discriminate between the relative importance of nodes in the same core. For example, AS and 

BR are ranked three, as shown in Table 2, even though AS is better connected than BR, as 

shown in Błąd! Nie można odnaleźć źródła odwołania.. It is noteworthy that core 

accessibility cannot bring out this difference between similarly ranked locations. 

 

                                                 
7 See Błąd! Nie można odnaleźć źródła odwołania. in Appendix A for codes of states and union territories. 
8 Note that node SK might be connected by some other airline. 
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Fig. 3. Core Decomposition of unweighted and undirected test network reveals five 

levels of hierarchy in the network. Nodes with the same color belong to the same core 

 

Tab. 2 

Ranks of nodes in the test network according to their core accessibility (CA) 

 

 

4.2 Comparing accessibility at the regional level 

 

The local core accessibility (LCA) measure quantifies the ease of reaching a location (node) 

within a region by aggregating core accessibility of its neighbor nodes. LCA captures finer 

distinctions between nodes with the same core accessibility values by considering the location 

of its neighbors in the network hierarchy. Nodes with the same core accessibility may have 

different LCA values due to differences in the core accessibility of their respective neighbors. 

Analyzing nodes AS and BR, ranked equally for core accessibility measure, have different local 

core accessibility values. Note that in Table 3a, AS is ranked 10, while BR does not appear 

among the top 15 nodes. Thus, the LCA measure can distinguish among the nodes ranked 

equally by the core accessibility measure. 

 

Rank 1 2 3 4 5 

Nodes in 

the test 

network 

AP, DL, KA, 

MH, TS, TN, 

WB 

GA, KL, 

OD 

AN, AS, BR, 

GJ, MP, PY, 

UP 

AR, CG, CH, 

HP, HR, JK, 

LA, MN, MZ, 

NL, PB, RJ 

DD, JH, LD, 

ML, TR, UK 
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(a) Neighbor of node AS with their 

respective CA values 

 

 
 

(b) Neighbor of node OD with their 

respective CA values 

 

Fig. 4. Core accessibility values of neighbor of nodes AS and OD as in the test network 

 

Consider the seven highest-ranked nodes (AP, DL, KA, MH, TS, TN, and WB), according 

to their core accessibility in Tab. 2. These nodes are ranked uniquely by the LCA measure, as 

shown in Table 3a. It is interesting to note that though AS has a lower core accessibility than 

OD, it has a higher LCA value. This is because AS is connected to nodes with higher core 

accessibility than OD, as shown in Figures 4a and b. 

 

 

 
 

(a) Neighbors of GJ with their respective 

LCA values 

 

 
 

(b) Neighbors of AN with their 

respective LCA values 

 

Fig. 5. LCA values of neighbors of GJ and AN as in the test network 

 

Limitations of Local Core Accessibility: Though the LCA computes the accessibility of a node 

by giving due consideration to its neighborhood, it is deficient in discerning the network-wide 

accessibility of nodes. Two nodes with the same local core accessibility may have different patterns 

of network-wide connectivity. For example, in Table 3a, AN and GJ in the test network (Błąd! Nie 

można odnaleźć źródła odwołania.) have the same local core accessibility. But neighbor nodes of 

GJ have higher regional accessibility than the neighbors of AN. This is illustrated in Figure 5a, 
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showing the neighbors of GJ, and Figure 5b, showing the neighbors of AN along with their local 

core accessibility values. The LCA is unable to discriminate the nodes on this ground and thus ranks 

them equally. 

 

Tab. 3 

Ranks of top 15 nodes of the test network in Błąd! Nie można odnaleźć źródła odwołania. 

for their  

(a) local core accessibility ( )  and (b) network-wide core accessibility ( ) 

 

(a)   values 

Node   Rank 

DL 71 1 

MH 58 2 

TN 48 3 

WB 42 4 

KA 41 5 

TS 36 6 

AP 32 7 

KL 28 8 

GA 22 9 

AS 21 10 

OD 20 11 

MP 18 12 

UP 16 13 

AN 15 14 

GJ 15 14 

PB 14 15 
 

(b)   values 

Node   Rank 

DL 1 1 

MH 0.8156 2 

TN 0.6385 3 

KA 0.539 4 

WB 0.4822 5 

TS 0.4475 6 

AP 0.3598 7 

KL 0.2732 8 

OD 0.1719 9 

GA 0.1552 10 

AS 0.1317 11 

MP 0.1298 12 

GJ 0.1037 13 

UP 0.0982 14 

PB 0.0806 15 
 

 

4.3 Comparing accessibility at the network level 

 

Transport planners and service providers often need a global (network-wide) view of the 

accessibility of locations. NCA measure further teases out the differences in accessibility from 

the perspective of the overall topology of the network. Consider nodes GJ and AN, ranked 

equally (14) by the LCA measure, as shown in Table 3a. They are assigned different network-

wide accessibility values (Table 3b). GJ is ranked 13 by the NCA measure, but AN does not 

appear among the top15 nodes. Thus, NCA discriminates among the nodes ranked equally by 

the LCA measure. Critical observations, as elaborated below, provide additional insights into 

the advantages of network-wide accessibility. 
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Table 3 displays the top 15 nodes ranked according to their network-wide core accessibility 

values. Consider nodes WB and KA, which ranked four and five, respectively, for LCA values 

(Table 3a). Interestingly, despite KA and WB being connected to a few common neighbor nodes 

(AS, DL, MH, TN, and TS), KA is ranked higher than WB according to network-wide core 

accessibility ( 

Fig. 6). This is due to more connections of KA to nodes with higher regional accessibility 

(GA, AP, and KL), as shown in  

Fig. 6a. On the other hand, WB is connected to more nodes with relatively lower regional 

accessibility (AR, BR, AN, ML, MZ, NL, and TR). This can be observed from the 

neighborhood network of WB, as shown in  

Fig. 6b. 

 

 

 
(a) Neighborhood of node KA with their 

respective LCA values 

 

 
(b) Neighborhood of node WB with their 

respective LCA values 

 

Fig. 6. Neighborhood of KA and WB as in the test network 

 

 

5. COMPARING ACCESSIBILITY IN WEIGHTED AND UNWEIGHTED 

NETWORKS 
 

We first demonstrate the advantages of the weighted version of accessibility metrics over 

their unweighted counterparts using the monotonicity of the metrics as a quality measure. 

Subsequently, we present a case study demonstrating the application of the proposed metrics 

to study temporal changes in transport networks. We use the proposed metrics to compare the 

accessibility of Indian airports in pre-and post-covid times. The data for both experiments are 
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sourced from the Directorate General of Civil Aviation9. The code for the metrics is written 

in R (64 bits, v 4.0.3)10. 

 

5.1 Assessing the quality of metrics 

 

It is important to assess the discriminatory power of the metrics as all values are eventually 

transformed to rank for practical utility. A metric that assigns the same rank to many nodes 

is less preferable to a metric that can tease out the differences better and has fewer nodes with 

the same rank. 

We use the monotonicity function to assess the fidelity of our metrics quantitatively [43]. 

We rank the nodes according to their accessibility values. The node with the highest 

accessibility is ranked one. The nodes with equal accessibility are assigned the same ranks. 

Let r  be a vector of the ranks assigned to n nodes of the graph G , with rn  as the number of 

ties in the ranks. Monotonicity ( )M r of ranks is defined as given below. 

 

                                                     

2

( 1)

( ) 1
( 1)

r r

r

n n

M r
n n

 
  
 
  



                                               (12) 

 

Monotonicity of the metrics is one if each node in the network is assigned a unique rank 

and zero when all nodes are assigned the same rank. We compute the monotonicity of each 

metric to ensure its efficacy.  

 

5.2 Analyzing the accessibility of a service provider 

 

We construct a simple, undirected, weighted network for the winter schedule 2020 

(winter20) of Air Asia, a domestic airline. Then, we compute the weekly frequency of each 

incoming and outgoing flight, excluding the flights scheduled only for a specific day. 

Thereafter, we consider the minimum frequency of incoming/outgoing flights between pairs 

of nodes (airports) in the network as the edge weight. The network is shown in Błąd! Nie 

można odnaleźć źródła odwołania. in Appendix B. 

Tab. 4 shows the degree (column Degree), normalized weighted degree (column ˆ uω ), and 

ranks of nodes (airports) assigned as per the proposed unweighted and weighted versions of 

the three-accessibility metrics. The nodes are sorted by their normalized weighted degree 

(column ˆ
uω ). We compare the ranks assigned to the airports, presenting a detailed analysis 

below. 

We observe that nodes belonging to the same core (column Core) are ranked equally for 

core accessibility (column CA). But when the weighted core accessibility is computed, the 

ranks are distinct. For example, BLR, DEL, BOM, CCU, MAA, and HYD belong to core five 

and are ranked one according to their core accessibility. However, BLR is ranked highest 

according to its weighted core accessibility (column wCA) due to the maximum number of 

flights (158) connecting it to other airports in the network. Since core accessibility bunches 

multiple nodes together, assigning them the same rank, it has the least monotonicity (0.57), 

                                                 
9 https://www.dgca.gov.in. 
10 In the interest of reproducibility, the code will be made public after the notification. 

file:///C:/Users/Anujg/Downloads/www.dgca.gov.in
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showing that it is a coarse metric. However, when weights are considered, monotonicity 

increases significantly to 0.98. Note that COK and JAI are differently accessible due to the 

difference in the accessibility of their respective neighbors. However, despite its high 

monotonicity, wCA is unable to reflect this difference and assigns the same rank to the two 

nodes. 

LCA, which is designed to reveal the effect of accessibility of its neighbors, can discern 

between COK and JAI (column LCA in Tab. 4). However, the LCA assigns the same rank to 

multiple locations (AMD, BBI, IXB, IXR, and PNQ), each of which is ranked distinctly by 

the wLCA metric. BBI has the highest weighted local core accessibility value due to the 

highest number of connecting flights (31) among these nodes. Note that wLCA ranks IDR 

and VTZ equally, which is reflected in its monotonicity value, which is less than the perfect 

score of one. Lower monotonicity of LCA compared to wCA should not be considered 

a drawback, as they both quantify accessibility at different granularity levels and have 

different purposes. 

 

Tab. 4 

Ranks of airports connected by Air Asia flight (winter schedule 2020),  

according to the proposed core-based accessibility measures 

 

Nodes Degree ˆ
u  Core CA wCA LCA wLCA NCA wNCA 

BLR 17 0.1846 5 1 1 1 1 1 1 

DEL 16 0.1729 5 1 2 2 2 2 2 

BOM 12 0.09 5 1 3 3 3 3 3 

CCU 8 0.0713 5 1 4 5 4 5 4 

MAA 9 0.0631 5 1 5 4 5 4 5 

HYD 6 0.0502 5 1 6 6 6 6 6 

GOI 4 0.0467 4 2 7 9 7 9 8 

GAU 4 0.0444 3 3 9 10 10 10 10 

BBI 3 0.0374 3 3 10 11 11 11 11 

IXR 3 0.0362 3 3 11 11 12 11 12 

COK 5 0.0304 5 1 8 8 9 8 9 

JAI 6 0.0304 5 1 8 7 8 7 7 

IXB 3 0.028 3 3 12 11 13 13 13 

AMD 3 0.0234 3 3 13 11 14 12 14 

PNQ 3 0.0222 3 3 14 11 15 14 15 

SXR 1 0.021 1 5 16 13 17 18 19 

IDR 2 0.0164 2 4 15 12 16 15 16 

VTZ 2 0.0164 2 4 15 12 16 17 17 

IMF 1 0.0082 1 5 18 14 19 19 20 

IXC 2 0.007 2 4 17 12 18 16 18 

Monot

onicity - - - 

0.5

7 0.98 0.87 0.99 0.99 1 
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As mentioned in Section 4.2, the LCA does not capture the recursive impact of 

accessibility of the neighbor nodes. Intuitively, a node connected to neighbors with high local 

accessibility should have better network-wide accessibility. We observe that VTZ and IDR 

are ranked equally for all metrics except NCA. IDR and VTZ have a common neighbor, BLR. 

But the difference in their rank is attributed to the difference in the local accessibility of their 

other neighbor, DEL (rank 2) and MAA (rank 4), respectively. This example shows that NCA 

is a more discerning metric than the LCA. 

Observing the column NCA in Tab. 4, we find that BBI and IXR are ranked equally as 

they are connected to the same nodes in the network. But BBI is ranked higher by weighted 

network-wide core accessibility (column wNCA) due to more connecting flights. We observe 

that the wNCA metric has the highest monotonicity (one) and is the most discerning. Since 

wNCA depends on the wLCA as well as its connectivity in the network (captured by 

eigenvector centrality), we believe that wNCA will generate unique rankings. However, in 

the unlikely case of duplicate ranks of two nodes, both are considered to be equally accessible.  

 

5.3 Temporal changes in accessibility 

 

Temporal changes in accessibility provide valuable inputs to the stakeholders of the 

transport industry. Transport service networks expand (shrink) over time due to addition 

(reduction) in destinations or increase (decrease) in frequencies of services. The influence of 

these changes on the accessibility of locations in the network is often not obvious. We 

demonstrate the utility of weighted metrics to compare and reveal the changes in the 

accessibility of Indian airports at two different points in time. We use the domestic airlines 

network for the following two schedules obtained from the Directorate General of Civil 

Aviation9. 

1) Pre-covid times: winter schedule 2019 (winter19)11 for Air Asia, Air India, Alliance 

Air, Deccan, Go Air, Heritage, Indigo, Pawan Hans, Spicejet, Star Air, Truejet, and 

Vistara airlines 

2) Post-covid times: winter schedule 2020 (winter20)12 for Air Asia, Air India, Alliance 

Air, Go Air, Indigo, Pawan Hans, Spicejet, Star Air, Truejet, and Vistara airlines 

 

For constructing the weighted network for all domestic air carriers, we first construct the 

network for each airline as described in Section 5.2. Thereafter, we sum up the weights of the 

edges, where the edge weight connotes the minimum frequency of incoming/outgoing flights 

between pairs of nodes in the network over all air carriers. 

 

Fig. 7 displays the comparison of wLCA and wNCA values of Indian airports in the pre-

and post-covid times. The airports are sorted on weighted accessibility values for pre-covid 

times.  

Fig. 7a reveals that the regional accessibility of the top 10 airports has reduced in post-

covid times, as expected. This is attributed to the drop in the number of flights to and from 

these nodes in the winter20 schedule.  

Fig. 7b shows the regional accessibility of the bottom 10 airports. It can be seen that six 

out of the ten least accessible airports are still not accessible (wLCA is zero) due to the non-

resumption of flight services. Surprisingly, the regional accessibility of four airports, namely 

SXV, LUH, IXP, and TEZ, has improved post-covid. The decrease in the overall connectivity 

                                                 
11 Schedule during the period Oct'19 - Mar'20. 
12 Schedule during the period Oct'20 - Mar'21. 
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in the network led to this improvement. The increase in the frequency of flights between TEZ 

and IXP in the post-covid schedule further amplifies their wLCA scores. 

 

Fig. 7c shows the change in network-wide accessibility for the top 10 airports in the two 

periods. The figure reveals the holistic view of the accessibility of domestic airports at two 

points in time. The resumption of flights in the post-covid schedule has almost restored the 

accessibility of the top ten airports. For example, we observe a slight improvement in the 

network-wide accessibility of BLR and HYD, despite a fall in their regional accessibility. The 

regional accessibility of BLR and HYD reduces post-covid due to the reduction in the flights 

connecting them in the network. The increase in their network-wide accessibility is attributed 

to the increase in the accessibility of their neighbors due to the increase in their connectivity 

with other nodes in the network. However, network-wide accessibility for six of the bottom 

ten airports is yet to resume ( 

Fig. 7d). IXP, IXT, and TEZ are exceptions with an increase in their network-wide 

accessibility post-covid due to the increased frequency of flights. 

 

 
a) wLCA values of the top 10  

Indian airports 

 

 
b) wLCA values of the bottom 10  

Indian airports 

 

 
 

c) wNCA values of the top 10  

Indian airports 

 

 
 

d) wLCA values of the bottom 10  

Indian airports 

 

Fig. 7. Comparison of local and network-wide accessibility of airports in  

pre-covid (winter19) and post-covid (winter20) times. 

Airports are sorted by their local and network-wide accessibility in winter19 times 

 

 

6. CONCLUSION 
 

In this paper, we propose novel accessibility metrics based on hierarchical decomposition 

of a transport network. The metrics gauge the accessibility of a geographical location (node 
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in the network) at different granularity levels and are scalable. Different attributes of 

accessibility, like travel cost, travel time, distance, quality of service, etc., can be quantified 

as edge weights establishing the versatility of the proposed metrics. 

We use the k-core decomposition of the network to elicit the hierarchical position of a 

node and use it in three different forms to quantify core accessibility (coarse level), local core 

accessibility (regional level), and network-wide core accessibility (network level). Weighted 

versions of the metrics capture finer differences between the accessibility of locations that 

are similarly connected. 

Furthermore, we demonstrate the applications of the proposed metric using test networks 

of Indian Airlines. We also present a case study of the Air Asia network to elucidate the 

utility, relative advantages, and disadvantages of the proposed metrics. Finally, we show that 

the measures are responsive to changes in the topology of the transport network by presenting 

an analysis of changes in accessibility for the domestic air services network for both pre-

covid and post-covid times. 
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