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ON SITE PROCESSING OF VIDEO STREAM FOR MAPPING 

TRAFFIC PARAMETERS 
 

Summary. Traffic surveillance provides crucial data for the operation of 

intelligent transportation systems. The growing number of cameras in the transport 

system poses a problem for the efficient processing of surveillance data. Processing 

of video data for extracting traffic parameters is usually done using image 

processing methods and requires substantial processing resources. An alternative 

way is to transform the video stream and map the traffic parameters using the 

obtained transform coefficients. Spatiotemporal wavelet transform of the video 

stream contents, using filter banks, is proposed for mapping traffic parameters. 

Performed tests prove good resilience to illumination changes of road scenes. 

Mapping errors are smaller than in the case of the commonly used video detectors 

at sites on multilane roads with low to moderate traffic load. 

Keywords: video surveillance, discrete wavelet transforms, traffic flow, 

traffic density, intelligent transportation systems 
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1. INTRODUCTION 

 

Intelligent transportation systems integrate information and communication technologies to 

improve the functioning of road networks and increase the efficiency of moving people and 

goods [1]. Determining the state of the transport system is decisive for the development of 

traffic control decisions [2]. Modelling of state changes contributes to establishing traffic 

management strategies [3,4]. Traditional approaches to measuring road traffic parameters, 

which constitute the bulk of information on the transport systems state, incorporate inductive 

loop detectors, magnetic detectors, ultrasonic detectors, radar detectors, and laser detectors 

[5,6]. Most of these devices can provide only spot data, which means data collected at defined 

areas of traffic lanes. 

The development of intelligent transportation systems is manifested by the growing number 

of cameras distributed on the road network [7,8]. Hence, it is essential to integrate them into a 

functional entity to provide traffic data. The large volume of raw image data can pose an acute 

problem for the efficient processing of the content. Video cameras provide rich contextual 

information on the course of road traffic. Image processing-based methods are mostly used for 

extracting traffic parameters [9–11]. The accuracy and reliability of measurements, in this case, 

are coincident with the complexity of applied image processing algorithms and necessary 

computing resources. Detection of individual vehicles is a preliminary stage of determining 

road traffic parameters. The variable parameters of the observation, especially changes in 

illumination, pose problems for correct detection [12,13]. Background modelling is used to 

determine the empty road template, which is subtracted from the current video frames. The 

result depicts moving objects, by default, vehicles [14,15]. Several models developed for 

different observation environments require modest processing power for implementation and 

achieve proper vehicle detection mainly for limited changes of the road view [16,17]. 

The extraction of low-level features of images increases the processing complexity for 

detecting objects. This approach involves the application of filters and the clustering of filter 

results. Detection results surpass background subtraction methods but still fall short of 

expectations in the case of highly changing illumination of the traffic scene. Local feature 

descriptors, such as Histograms of Gradients (HOG)[11], Scale Invariant Feature Transform 

(SIFT) [18], Speed-Up Robust Feature (SURF), and Gradient Location Orientation Histogram 

(GLOH) [19] improve the detection capabilities but impose still higher processing requirements 

[20,21]. 

Vehicle motion models once again introduce a higher requirement on processing power. The 

models are based on the calculation of optical flow and connected region analysis. Horn–

Schunck optical flow estimation algorithm [22] is the starting point of modifications in the 

course of increasing the robustness of vehicle detection. For instance, Peng et al. proposed the 

use of inter-frame differences for triggering calculations, which significantly reduces the 

computation burden for updating the optical flow field [23]. 

Wavelet-based transforms are readily used for the analysis of road traffic parameters. The 

ability of localizing features and multi-resolution representation of parameter changes are 

arguments for the application of these transforms. The input data for analysis are predominantly 

a series of measurements collected at sites of the road network. These are time instants of 

detections of individual vehicles, vehicle speed values, distances between vehicles, or 

aggregated quantities. The registered data points are indexed in time order and can be regarded 

as time series data. Time series analysis comprises frequency domain methods and time domain 

methods. Wavelet analysis belongs to the frequency domain group of methods. Two main 

problems are studied: designation of the wavelet basis function of the transform and 
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determination of the level of decomposition, for effective description of the traffic data. The 

“ability” of a wavelet to represent different features of traffic data is characterised by the size 

of the support and the number of vanishing moments, whereas the decomposition level delimits 

the resolution for the extraction of data attributes.  

Early works [7,24] concentrated their efforts on the analysis of traffic flow patterns. The 

statistical autocorrelation function (ACF) is used for the selection of the decomposition level. 

This function is usually used to detect trends and seasonality in a time series. In this case, ACF 

is calculated for the original dataset and wavelet decompositions at different levels of the 

dataset. Equal ACF values signify the correct choice of the decomposition level. In [25], was 

proposed the wavelet transform of loop detector data for revealing bottlenecks, transient traffic, 

and traffic oscillations. Wavelet-based energy peaks from vehicle to vehicle are traced. The 

duration and intensity of the peaks are processed to obtain traffic features and calculate traffic 

parameters [25,26]. The task of detecting singularities in noisy traffic data is studied, 

singularities in traffic data may indicate bottlenecks or traffic incidents.  

The problem of video-based traffic surveillance is addressed in [27]. The authors use a two-

dimensional discrete wavelet transform for extracting features describing vehicles from the 

images. Haar wavelet is used as the basis, and the decomposition is done in the space domain. 

Tests using highway traffic images prove good resilience to shadows on the traffic lanes.  

In this paper, spatiotemporal wavelet transform of the video stream from the observation 

camera is proposed for mapping road traffic parameters instead of applying image processing. 

The change of contents of the stream represented by transform coefficients, instead of detecting 

and tracking vehicles, is the basis of the mapping. The mapping of video for representation to 

traffic parameters is not reported. Reported methods for crowd analysis using video from 

surveillance cameras share components of this approach. Crowd density is determined using 

direct processing of video content [28]. 

The digital form of video data imposes the use of discrete wavelet transform (DWT) versions 

of the transform. Preliminary tests show that the use of wavelet-based transform of video data 

retains the characteristics of traffic parameters. A set of detection fields is defined on the image 

of an observed traffic lane. Passing vehicles are recorded entering these areas. The weighed 

sum of coefficients of the wavelet transform of a vehicle detection field content corresponds to 

the traffic density observed on the traffic lane; a similar correspondence is observed for traffic 

flow. 

The primary objective of this paper is to present the idea of the method for the application 

of the spatiotemporal wavelet transform to map road traffic parameters such as traffic flow and 

traffic density.  

 

 

2. MAPPING ROAD TRAFFIC PARAMETERS 
 

The problem of mapping road traffic parameters using transform coefficients of a video 

stream is the goal of this study. What parameters of a wavelet transform give a good estimation 

of the road traffic parameters such as traffic flow and traffic density? 

The domain of wavelet transforms is chosen as the basis for this study. The literature review 

gives examples of feature extraction, especially space features, for finding relations with traffic 

parameters. The proposed idea focuses on the temporal features of the video stream. 

Decomposition of the video stream in time enables the extraction of features that can describe 

road traffic. Additional space decomposition reduces the data stream for processing. The task 

is to determine the levels of decomposition and choose the coefficients that are significant for 
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mapping road traffic. The mapping results should not diverge substantially from the mappings 

obtained by commonly used video-based devices - video detectors. The video stream to be 

processed comes from surveillance cameras mounted above roads leading to town centres. No 

special cameras were used for the video data collection. 

 

2.1. Road scene model 

 

Traffic flow and traffic density values carry the most important information useful for 

controlling and managing road traffic. These parameters are the objects of mapping. The input 

to the mapping is a video stream depicting the changing traffic scene. CCTV cameras are the 

usual source of video data. Important parameters of the stream are resolution, range of 

observation, and speed of registration. Video stream 𝐹 is represented as a sequence of images 

𝐼(𝑥, 𝑦) registered at consecutive moments of time 𝑡. It is a discrete entity: 

 

𝐹(𝑡, 𝑥, 𝑦) = {𝑡, 𝐼(𝑥, 𝑦): 𝑡 = 1. . . 𝐾, 𝑥 = 1. . . 𝑀, 𝑦 = 1. . . 𝑁}                  (1) 

 

The values of 𝑁, 𝑀 indicate spatial resolutions – number of rows, columns of the images, 

moments of time are defined by the speed of registering video data. Fixed lengths of video 

streams are transformed – 𝐾 images. 

Road traffic combines the movement of vehicles of different sizes and with various dynamic 

properties. To capture these characteristics, a multi-resolution representation is proposed as the 

basis for mapping traffic parameters. This approach is related to finding description keys at 

distinct scales of observation of the traffic. Such descriptions can be nested [29]. Techniques to 

compute nested sequences of multi-resolution representations are closely related to wavelets. 

Multiscale representation using wavelets was introduced by S. Mallat in [30]. 

 

2.2. Description of video stream contents 

 

Description of image contents is done using a two-dimensional spatial discrete wavelet 

transforms. To capture changes of the video stream in time, the transforms are extended to 

include processing in time. The video stream is represented using wavelet coefficients 

𝑊𝜑(𝑗0,𝑘, 𝑚, 𝑛) and 𝑊𝜓
𝑖 (𝑗, 𝑘, 𝑚, 𝑛): 

 

𝐹(t,x,y) =
1

√𝐾𝑀𝑁
∑ ∑ ∑ 𝑊𝜑𝜑𝑗0,𝑘,𝑚,𝑛

𝑛𝑚𝑘

(𝑡, 𝑥, 𝑦) 

+
1

√𝐾𝑀𝑁
∑ ∑ ∑ ∑ ∑ 𝑊𝜓

𝑖 𝜓𝑗,𝑘,𝑚,𝑛
𝑖

𝑛𝑚𝑘

(𝑡, 𝑥, 𝑦)

𝑗𝑟

𝑗=𝑗0

7

𝑖=1

 

(2) 

 

The dyadic scale is used, the scaling function 𝜑𝑗0,𝑘,𝑚,𝑛(𝑡, 𝑥, 𝑦) and wavelet functions 

𝜓𝑗,𝑘,𝑚,𝑛
𝑖 (𝑡, 𝑥, 𝑦) are defined: 

 

𝜑𝑗0,𝑘,𝑚,𝑛 = 2𝑗/2𝜑(2𝑗𝑡 − 𝑘, 2𝑗𝑥 − 𝑚, 2𝑗𝑦 − 𝑛) 

𝜓𝑗,𝑘,𝑚,𝑛
𝑖 = 2𝑗/2𝜓𝑖(2𝑗𝑡 − 𝑘, 2𝑗𝑥 − 𝑚, 2𝑗𝑦 − 𝑛) 

(3) 

Where j – scale, k, m, n – shifts, all integers, the mother wavelet is shifted and scaled by 

powers of 2. 
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Separable wavelet functions are used for transforming the video stream, in this case, the 

functions can be rewritten, exposing the 1D components. There are seven combinations of φ 

and ψ: 

 

𝜓1 = 𝜑(𝑡)𝜑(𝑥)𝜓(𝑦),    𝜓2 = 𝜑(𝑡)𝜓(𝑥)𝜑(𝑦) 
𝜓3 = 𝜑(𝑡)𝜓(𝑥)𝜓(𝑦),  𝜓4 = 𝜓(𝑡)𝜑(𝑥)𝜑(𝑦) 
𝜓5 = 𝜓(𝑡)𝜑(𝑥)𝜓(𝑦),   𝜓6 = 𝜓(𝑡)𝜓(𝑥)𝜑(𝑦) 
𝜓7 = 𝜓(𝑡)𝜓(𝑥)𝜓(𝑦) 

(4) 

 

Efficient computing of coefficients is carried out using filters. Transform functions are 

substituted by filters defined by sets of weights corresponding to the characteristics of the 

functions. Filter 𝑔(𝑘) represents scaling, while ℎ(𝑘) represents wavelets. By applying the 

filters recursively [30], the coefficients are obtained as: 

 approximation 

𝑆𝑗+1(𝑘, 𝑚, 𝑛) = ∑ ∑ ∑ 𝑔(𝑡)𝑔(𝑥)𝑔(𝑦)𝑆𝑗

𝑁

𝑦=1

𝑀

𝑥=1

𝐾

𝑡=1

 (5) 

 details 

𝐷𝑗+1
𝑖 (𝑘, 𝑚, 𝑛) = ∑ ∑ ∑ 𝐾𝑖(𝑡, 𝑥, 𝑦)𝑆𝑗

𝑁

𝑦=1

𝑀

𝑥=1

𝐾

𝑡=1

 (6) 

where 𝐾𝑖are combinations of filters corresponding to (4). 

 

The approximation coefficients are decomposed with combinations of filters and then down 

sampled. This is represented as a filter bank in Figure 1.  

 

 Tab. 1 

Prediction and update functions for Deslauriers-Dubuc wavelets  

Wavelet Prediction and update functions 

DD(1,1) 

 

𝐷1,𝑖 = 𝑆0,2𝑖+1 − 𝑆0,2𝑖 

𝑆1,𝑖 = 𝑆0,2𝑖 + ⌊𝐷1,2𝑖/2⌋ 

DD(2,2) 
𝐷1,𝑖 = 𝑆0,2𝑖+1 − ⌊(𝑆0,2𝑖 + 𝑆0,2𝑖+2)/2 + 1/2⌋ 

𝑆1,𝑖 = 𝑆0,2𝑖 + ⌊(𝐷1,𝑖−1 + 𝐷1,𝑖)/4 + 1/2⌋ 

DD(4,4) 
𝐷1,𝑖 = 𝑆0,2𝑖+1 − ⌊9(𝑆0,2𝑖 + 𝑆0,2𝑖+2)/16 − (𝑆0,2𝑖−2 + 𝑆0,2𝑖+4)/16 + 1/2⌋ 

𝑆1,𝑖 = 𝑆0,2𝑖 + ⌊9(𝐷1,𝑖−1 + 𝐷1,𝑖)/32 − (𝐷1,𝑖−2 + 𝐷1,𝑖+1)/32 + 1/2⌋ 

 

Table 1 lists the wavelet transforms used in this study. The least demanding computationally 

wavelet DD(1,1) corresponds to the Haar wavelet. Deslauriers-Dubuc interpolating scaling 

functions, also known as Interpolets, are good candidates for such applications. To streamline 

calculations, the lifting scheme is used. The lifting step consists of 𝑃(𝑘)- prediction, 𝑈(𝑘) - 

update functions (mappings): 

 

𝐷𝑛,𝑖 = 𝐷𝑛−1,𝑖 + ∑ 𝑃(𝑘)𝑆𝑛−1,𝑖−𝑘

𝑘

 

𝑆𝑛,𝑖 = 𝑆𝑛−1,𝑖 + ∑ 𝑈(𝑘)𝐷𝑛−1,𝑖−𝑘

𝑘

 
(7) 



180 W. Pamuła, M.J. Kłos 

 

The choice of wavelet basis functions for the transforms is conditioned by the complexity of 

the calculation. Effective solutions, for instance, incorporating logic-based processing, suitable 

for on-site designs [9], call for integer based calculations.  

 

2.3. Method for mapping of road traffic parameters 

 

The calculation of spatiotemporal wavelet transform coefficients according to Mallat's 

scheme results in a set of detail coefficients for every decomposition level and one set of 

approximation coefficients for the last decomposition level. Decomposition level labels the 

consecutive step of application of the set of filters to 𝑆𝑗 in the course of calculation of the 

transform coefficients. The filters are applied to pixel values in 3 dimensions (t, x, y). The 

notation (𝑙𝑡, 𝑙𝑥, 𝑙𝑦) means that changes in time of pixel values are filtered 𝑙𝑡 times, whereas 

changes at space positions are filtered 𝑙𝑥 and 𝑙𝑦 times. 

The lower the decomposition level, the larger the number of coefficients in the set. 

The question arises, which coefficients carry significant clues for describing traffic parameters 

and which can be discarded. If the length of the transformed stream is 2𝑘 at the 𝑘 decomposition 

level in time, there are seven sets of detail coefficients and one set of approximation 

coefficients. Sets have the same number of elements defined by the level of space 

decomposition and the size of the input image. Input image of the size 512×512 pixels, 

decomposed at the third level, is represented by sets of (512/23)×(512/23) = 4096 coefficients. 

Only the coefficients at the highest level of decomposition are used for mapping. These carry 

the synthetic description of the image contents changes at patches of the size (512/23) and in a 

period of 2𝑘 frames of the video stream. A sum of weighted coefficients is proposed for 

mapping traffic parameters𝑞: 

 

𝑞 = 𝑤0𝑆𝑗 + ∑ 𝑤𝑖𝐷𝑗
𝑖

7

𝑖=1

 (8) 

 

Weight values 𝑊 = [𝑤0, 𝑤1, … , 𝑤7]𝑇depend on the way the traffic is observed. Camera 

position relative to traffic lanes defines the angle of observation, deformation of observed 

vehicles, light, and contrast of the traffic scene. A calibration procedure is required to obtain 

the values of the weights. Weights are calculated based on previous observations of the traffic. 

The observed traffic lane is represented by sums of coefficients 𝑐, calculated for 2𝑘 frames 

of the video stream that cover the area of the traffic lane. 

 

                                  𝑞 = 𝑤0𝑆𝑗 + ∑ 𝑤𝑖𝐷𝑗
𝑖

7

𝑖=1

𝑐0 = ∑ 𝑆𝑗

𝑎

    𝑐0 = ∑ 𝐷𝑗
𝑖

𝑎

 (9) 

 

These are calculated for a number of periods 𝑠 and used as input data for calculating weights: 

 

𝐶 = [

𝑐10, 𝑐11, . . . , 𝑐17

𝑐20, 𝑐21, . . . , 𝑐27

. . .
𝑐𝑠0, 𝑐𝑠7, . . . , 𝑐𝑠7

] (10) 
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For 𝑠 previous measurements of the traffic parameter 𝑄𝑝 = [q1, q2, … , qs]Tthe over-

determined system 𝑄𝑝 = 𝐶𝑊 defines the calculation task. The goal is to find the best weights 

W in the sense of solving the quadratic minimization problem with the objective function: 

 

𝑆(𝑊) = ∑ |𝑞𝑖 − ∑ 𝑐𝑖𝑗𝑤𝑗

7

𝑗=0

|

𝑠

𝑖=1

2

= ‖𝑄𝑝 − 𝐶𝑊‖ (11) 

 

which gives: 

 

𝑊 = (𝐶𝑇𝐶)−1𝐶𝑇𝑄𝑝 (12) 

 

The derived set of weights is specific for a measurement site. 

 

 

3. RESULTS AND COMPARISON WITH PERFORMANCE OF VIDEO 

DETECTORS 

 

Mapping of traffic flow and traffic density using wavelet transform coefficients is examined 

in this section. Road traffic data collected at several sites are used for calculating the weights 

of the representations (equation 12). Figure 1 shows examples of camera sites where multilane 

roads with high to low traffic loads are observed. 

 

 
Fig. 1. Camera sites views: a) high traffic, b) medium traffic, c) low traffic 

 

The range of observation is limited by the acceptable sizes of vehicles expressed in the pixels 

of the image. Image resolution and noise level impose the condition that the smallest vehicle 

size should be a few hundred pixels. This defines a field of view not longer than 150 metres 

when a standard CCTV camera is used. The highest level of wavelet transform decomposition 

in the space of the image is determined by the need to preserve vehicle representations. A CCTV 

image of the size 720×568 split into 25×25 patches satisfies the considered limits. This limits 

the level of decomposition in space to 5.  

The level of wavelet transform decomposition in time 𝑘 is established by the requirements 

of updating traffic parameters. The update period is defined by the duration of 2𝑘 frames of the 

video stream. Weights for mapping road traffic parameters are calculated for the collected 

traffic data, and the errors of mappings are evaluated. Mean absolute percentage error (MAPE) 

and root mean square percentage error (RMSPE) values are used for comparing the results.  
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3.1. Measurement sites 

 

Data from three measuring sites localized on multilane roads are used for the tests – Figure 

1. The sites have highly illuminated and shadowed lanes. Vehicles travelling on the illuminated 

road lane cast shadows on the parallel lane, causing it to be shadowed. The parallel lane contains 

combined shadows from both traffic lanes, and this is a source of errors. The moving sun may 

change the proportion of shadows on the lanes if the lanes are north- or south-bound; in this 

case, the proportions are constant. The lane with more shadows is named shadowed.  

 

 
 

Fig. 2. Graphs of traffic flow values recorded at the measurement sites 

 

This shadowing phenomenon is of particular interest as the source of measurement errors. 

In the case of video detectors, it usually causes extra vehicle detections. Morning traffic 

parameters are measured. Three measurement sites differing in the size of the traffic flow are 

selected: high, medium, and low traffic flow. Figure 2 illustrates the changes in values of traffic 

flow at the measurement sites during the measurement time period. High traffic flow surpasses 

1800 veh./h per lane, whereas the site with low traffic has flow values below 500 veh./h per 

lane. The largest flow differences between these two road lanes are noted at site (b) with the 

medium volume of traffic. 

 

3.2. Comparison of results of the proposed method 

 

The proposed approach for mapping traffic parameters is compared with the performance of 

video-based measurement devices present at traffic sites. Two devices are chosen to represent 

the current state of video-based vehicle detection technology. Both devices use basic image 

processing techniques for determining the presence of objects in the detection fields predefined 

on observed images of the road. The objects assumed to be vehicles are counted, and the times 

of their entry and duration of presence in the detection fields are used to calculate traffic 

parameters such as flow and density.  

The algorithm of detection of the first device, A, tracks the content of the detection field and 

when it substantially differs from the model of the observed background an object’s presence 

is signalled. The background is modelled statistically using one probability distribution. An 

example of the implementation of this principle of operation is protected by a patent [29]. The 

second device – B uses a more complex detection principle in which both the background and 

the detection fields are modelled using a fuzzy-based feature update algorithm, and when the 

two models differ an object’s presence is signalled. 
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The carried out mappings using DD(2,2) and DD(4,4) show no significant performance 

advantage over DD(1,1). The calculation of wavelet coefficients requires, in these instances, 

much more processing resources, which impairs on-site implementations. Representative 

results of mapping traffic parameters using DD(1,1) are further discussed. Traffic flow and 

traffic density are mapped using coefficients of DD(1,1) transforms of video streams of road 

scenes. 

 

3.3. Traffic flow 

 

DD(1,1) with varying decomposition parameters is used for mapping traffic flow. Second, 

third and fourth space decomposition levels and 13th and 14th temporal decomposition levels 

are investigated. The best mapping results are obtained for the set (14,3,3). None of the 

transform coefficients explicitly outweighs the others; this indicates that the camera observation 

parameters decisively determine the weights. Larger values of weights are noted for mapping 

most of the flow values on highly illuminated road lanes than on corresponding shadowed lanes. 

The video database consists of non-compressed films of road lanes recorded at the 

measurement sites. This material is inputted to the vehicle detection devices – video detectors, 

in real-time, and the detection results are recorded. Standard detection settings were used. The 

obtained values are matched with the reference sets of traffic parameter values. 

Table 2 summarizes the results of measuring traffic flow. MAPE error values for all 

measurement sites are lower than RMSPE values. MAPE values are less sensitive to outliers in 

comparison to RMSE values. The difference does not exceed ¼ of the MAPE, indicating a few 

outliers.  

 

 

Tab. 2 

Values of mapping errors for traffic flow 

 

Mapping errors [%] 

Measurement sites 

High traffic Medium traffic Low traffic 

Light Shadow Light Shadow Light Shadow 

Video 

detector A 

RMSPE 25 26 27 13 15 16 

MAPE 24 22 24 10 14 15 

Video 

detector B 

RMSPE 10 4,9 19 6,7 19 35 

MAPE 8,9 3,8 14 5,0 16 33 

Proposed 

method 

RMSPE 5,9 7,8 21 16 9,9 20 

MAPE 3,8 4,1 16 12 8,0 15 

 

Traffic on illuminated lanes is more accurately mapped than on the shadowed lanes, except 

in the case of medium traffic. The graph in Figure 3 shows that at the medium traffic site, traffic 

flow changes are more volatile than at the other sites. Examination of the video shows that large 

errors arise when vehicles temporarily slow down or stop due to abrupt changes in traffic 

density (traffic jams), and this is not captured by the transform. Some errors are caused by 

container trucks travelling in bunches. Higher placement of the observation camera can remedy 

this weakness. 
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Fig. 3. Mapping errors of traffic flow values 

 

Differences in RMSPE and MAPE error values are small, although video detector B shows 

a larger number of outliers. Video detector A copes better with low traffic, while video detector 

B with high traffic. The proposed transform-based processing performs better than the video 

detectors. There are no outstanding error values. Box plots presented in Figure 3 illustrate the 

error statistics in detail. 

Video detector B gives smaller errors than the mappings, but there are numerous outliers. 

Detailed inspection of the video material shows that these are the consequences of stopped 

vehicles, as it is in the case of mappings but the results generate much higher error values. 

 

3.4. Traffic density 

 

Again wavelet DD(1,1) with varying decomposition parameters is used for mapping traffic 

density. The same range of decomposition parameters is applied. The best mapping results are 

obtained for the set (14,3,3). Table 3 presents the errors in mapping traffic density. In 

comparison to flow mapping weights, the density mapping weights are substantially different. 

Some weights have very small values for all examined measurement sites. This can be of use 

in optimizing processing operations for calculating traffic density. 

 

Tab. 3 

Values of mapping errors for traffic density 

 

Mapping errors [%] 

Measurement sites 

a) High traffic b) Medium traffic c) Low traffic 

Light Shadow Light Shadow Light Shadow 

Video 

detector A 

RMSPE 10 14 9,5 9,5 17 38 

MAPE 7,7 12 7,0 7,9 14 32 

Video 

detector B 

RMSPE 11 6,0 22 8,1 17 38 

MAPE 10 5,2 17 6,6 12 26 

Proposed method 
RMSPE 9,0 19 14 14 12 22 

MAPE 7,2 15 12 11 10 15 

 

Mapping errors follow the same pattern as in the case of traffic flow. In all, errors are larger, 

especially at the high traffic site. Box plots presented in Figure 4 illustrate the error statistics in 

detail. 
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Fig. 4. Mapping errors of traffic density values 

 

Differences in RMSPE and MAPE error values are small for the proposed method. Traffic 

density at low traffic sites on shadowed lanes is determined with the largest errors by both video 

detectors. This poor performance may be linked to losing infrequently passing vehicles due to 

inadequate detection ability of objects partially covered by the shadows, which disrupt the 

object’s view.  

 

 

4. DISCUSSION 

 

Table 4 summarises the comparison of the performance of video detectors and wavelet 

mappings. The advantage of the proposed method is not significant but the consistency of the 

mapping - there are no outliers, is important for traffic control and management systems. 

The processing algorithm of video detector B presumably loses vehicles due to poor 

sensitivity to infrequently passing objects on the image. This may be caused by the parameters 

of updating the background model in the device. Similarly, several outliers in the case of 

medium traffic at an illuminated site also suggest that such conditions pose momentary 

difficulties in discerning and tracking features. 

 

Tab. 4 

Average errors in mapping and measuring traffic parameters for all sites 

 

Average 

errors 

[%] 

Video detector A Video detector B Proposed method 

flow density flow density flow density 

RMSPE 20 16 16 17 13 15 

MAPE 18 13 13 13 10 12 

 

The proposed method maps traffic flow and traffic density more accurately than commonly 

used video-based vehicle detection devices. In the case of high and low traffic, the ranges of 

errors are substantially lower. High momentary errors are recorded when the video contents 

reveal a stopped vehicle, which caused numerous lane changes by vehicles approaching this 

obstacle. High errors are also caused by queues of container trucks. These situations are less 

effectively represented by the transform coefficients especially related to temporal changes. 

The coefficient values indicate the scale of changes in time at different time resolutions. A high 

level of decomposition diminishes the sensitivity to high speed changes of contents, which are 

induced by such traffic situations. 
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Large vehicles present in the traffic lanes cause error fluctuations. Another level of 

decomposition can be chosen to alleviate the deficiency of different size object mapping in the 

course of transforming the video data. This approach should consider the characteristics of the 

observed road, that is, whether it is a transit road with heavy vehicles or an urban road mainly 

with cars.  

The errors in measuring traffic density are higher than traffic flow; it can be attributed to the 

higher influence of illumination changes in deriving the results. Modelling background as well 

as calculating wavelet coefficients is susceptible to noise. Changing illumination values can be 

regarded as a noise factor with highly volatile probability distribution parameters.  

The advantage of the transform-based approach lies in the reduction of computing operations 

for obtaining the mapping of traffic parameters. For instance, background subtraction requires 

background modelling involving statistical calculations using image pixel neighbourhoods that 

are hundreds of calculations per image pixel. Observation cameras provide video streams with 

a resolution of 720 × 576 at 25 frames a second, which amounts to over 10 MB/s when a pixel 

is represented using a single byte. The commonly implemented background model uses a 

mixture of Gaussians, usually 3, updated every video frame requiring at least 1-2 Gips. 

Transform calculations may be done in a processing pipeline using a non-processor based 

device. Implementation of calculations in all requires tens of operations per pixel, which are 

performed in parallel, at the speed of the incoming pixels.  

 

 

5. CONCLUSIONS 

 

The proposed method enables the mapping of road traffic parameters on multilane roads 

with smaller errors than the solutions currently implemented in video detecting devices. The 

video detecting devices perform poorly, especially when the road image is corrupted by 

shadows of vehicles travelling on adjacent traffic lanes. 

The spatiotemporal wavelet transform, by selecting different decomposition parameters, 

allows for the representation of features at different resolutions in time and space. It represents 

the features of objects at different scales - by choosing a decomposition level, it is possible to 

"filter out" vehicles with different sizes or characteristic details of appearance. This makes it 

possible to identify the position of individual vehicles in the video stream. The time 

transformation describes the dynamics of changes in the movement of the vehicles. This 

information is useful for mapping the changes in traffic parameters.  

The discrete wavelet transform can be implemented using the lifting scheme, significantly 

reducing the required computation budget. The application of an embedded processing system 

comprising of a field programmable gate array can efficiently calculate transform coefficients 

in real-time. Such one chip solutions can be integrated with traffic monitoring cameras and 

function as traffic data collection subsystem nodes in intelligent transportation systems. 

Finally, the proposed method of mapping road traffic parameters proves that a set of weighed 

coefficients of a wavelet transform give a credible estimation of road traffic parameters, such 

as traffic flow and traffic density. Hence, the proposed method requires further studies in the 

optimization of the processing algorithms suitable for available hardware resources.  
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