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SHORT-TERM TRAFFIC STATE ESTIMATION USING BREAKPOINT 

FLOW CALCULATION AND MACHINE LEARNING METHODS 
 

Summary. Estimation of the state of road traffic conditions is gaining increasing 

attention in recent intelligent transportation systems. Accurate and real-time 

estimation of traffic condition changes is critical in the management and control of 

road network systems. Thus, efforts are been made to predict short-term traffic 

conditions based on measured traffic data such as speed, flow and density. In this 

work, the state of the traffic is estimated through a three-step process. First, both 

speed and flow predictions for 15-minute ahead are made for a particular freeway 

segment. Four different regression models are used for the prediction task, namely, 

multi-layer perceptron neural networks (MLPNN), support vector regression 

(SVR), gradient boosted decision trees (GBDT), and k-nearest neighbors (kNN). 

Next, the breakpoint (BP) flow is calculated using the distribution of these predicted 

speed and flow values. In the final step, these predictions are classified as belonging 

to a “stable state” or “metastable state” by using the calculated BP as the threshold 

between these states. According to the experimental results, the values for MLPNN 

are the highest for speed (0.8564) and flow (0.9862) predictions. An identical BP, 

1050 pc/15min, is calculated for actual data as well as all prediction methods. 
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1. INTRODUCTION 

 

Intelligent transportation systems (ITS) are being equipped with smart sensing, computation 

and communication technologies to increase the operational efficiency and capacity of 

transportation systems [1-3]. Thus, it is possible to collect data related to traffic parameters 

accurately, reliably and in real-time. In particular, advanced traffic management systems 

(ATMS) and advanced traveler information systems (ATIS) need accurate and reliable traffic 

information to predict traffic characteristics for transport users to understand and estimate future 

traffic conditions. Hence, accurate and real-time traffic prediction has been defined as a very 

critical need for the operational efficiency of ITS [4]. 

Data-driven management and control of transportation systems have become possible as a 

result of recent advancements in technology and computer science. Prediction of traffic 

parameters has been a popular research subject since the late 1970s. Consequently, short-term 

traffic prediction, which refers to estimating the traffic conditions up to 60 minutes ahead, has 

been an essential part of ITS. Such predictions help optimization of transport systems such as 

real-time traffic management, development of control strategies, delay, congestion, and energy 

consumption reduction. 

The main variables that form the traffic flow theory are speed, flow and density. These 

variables alone cannot provide sufficient information to explain the irregular nature of the 

traffic. Thus, the situation of traffic has been explained using fundamental diagrams such as 

speed-density, density-flow and speed-flow diagrams. These diagrams were first established by 

Greenshields [5] and later improved by other researchers. Now, they form the basis of traffic 

theories and models, besides, they are important subjects of traffic measurements and teaching 

basis in the area of transportation. Since 1965, in all editions of the Highway Capacity Manual 

(HCM), inspecting speed-flow diagrams have constituted the basis of design and analysis 

methodologies for basic freeway segments and uninterrupted flow segments of multilane 

highways. Furthermore, these diagrams are used as the basic methodology for empirical studies 

of measured traffic data. 

Speed-flow diagrams are used to determine the capacity and level of service in uninterrupted 

flow segments of highways and basic freeway segments. Additionally, the relationship between 

these variables is useful in detecting the phase transition of traffic flow. The transition from 

stable flow to metastable flow occurs at the breakpoint (BP). It is especially the point separating 

the constant-speed portion of the curve in the diagram from the rest of it. Stable free flow 

prevails up to BP and after this point, metastable free flow is dominated present up to the 

maximum capacity value. BP is the point where the traffic flow situation starts to change; 

therefore, it is important to detect this point to understand the transition between stable traffic 

flow and change in vehicle speed. 

In the existing literature, several efforts have been made to address the prediction of traffic 

speed, density or flow; however, most of these studies only focus on the predictions of one of 

these parameters. However, predicting traffic speed or flow alone cannot explain traffic 

conditions adequately. Therefore, it is necessary to determine the BP of flow after which the 

traffic speed starts to decrease. Thus, proper identification of BP from the predicted values is 

important to predict the transition of flow from stable to metastable state in the short term [6]. 
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Relevant studies involve numerous methods for short-term traffic predictions. Van Lint and 

Van Hinsbergen [7] classified the approaches used in short-term traffic predictions into four 

categories: naïve, parametric, nonparametric and hybrid. These include the use of machine 

learning methods such as the k-nearest neighbors (kNN) [8], support vector regression (SVR) 

[9] and artificial neural networks (ANN) [10]. 

In this work, the state of traffic flow is estimated using the flow level corresponding to BP. 

The BP value was determined from the predicted flow and speed values. To achieve this, 15-

minute ahead predictions are performed using four different regression models, namely, multi-

layer perceptron neural networks (MLPNN), SVR, gradient boosted decision trees (GBDT), 

and kNN. Next, speed-flow diagrams for predictions of each of these methods are generated to 

calculate BP. Rate of change in standard deviations of speed against flow predictions is 

calculated to determine the BP. Finally, the state of traffic flow is estimated by checking which 

side of the calculated BP the predictions fall on. The main contributions of this paper are (i) 

both speed and flow predictions are made for a particular freeway segment, (ii) these predictions 

are analyzed together to calculate BP, and (iii) traffic flow state is estimated using the 

predictions and the calculated BP. 

 

 

2. BACKGROUND 
 

The speed-flow diagram is a parabolic curve and Hall et al. [11] described it as three regions 

representing uncongested, queue discharge and congested flow (Figure 1). It is essential to 

understand and interpret the speed-flow relationship for basic freeway segments as the related 

analysis method is based on calibrations of the speed-flow relationships under base uncongested 

flow conditions. The mathematical model adopted in HCM explains the speed-flow 

relationship, which is used for both freeways and multilane highways [12]. The same model is 

used in HCM as well, and based on this, a defined set of speed-flow curves for basic freeway 

segments under the base condition is given with the generalized graph shown in Figure 2 [13]. 

 

 
 

Fig. 1. Three-regime speed-flow model. Uncongested (I), queue discharge (II)  

and congested (III) regions [11] 
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Fig. 2. Speed-flow rate relationship in basic freeway sections for  

different free-flow speeds [13] 

 

In Figure 2, under uncongested traffic flow conditions, the curves consist of two regions; the 

linear part and the concave part. The linear part is the constant-speed portion of the curve and 

represents the free flow speed (FFS). FFS is an important parameter as several conditions such 

as capacity, service flow rates, daily service volumes and service volumes depend on it. In the 

regions where the flow rate is higher, the speed starts to decrease, and it shows a curvilinear 

change until it reaches the capacity value of the road segment. The transition between the linear 

part and the concave part is expressed as the BP. 

The model proposed in HCM [12] explains the speed-flow relationship with curves as shown 

in Figure 2. The speed-flow function is anchored by two points (BP, FFS) and (C, CS) that 

represent two regions, while C and CS represent the capacity and the speed at capacity, 

respectively. The basic approach of HCM [12] is quite simple since these anchor points can be 

algebraically determined with given equations. The equations require the estimation of 

deterministic values for BP, FFS, C, and CS. In this regard, some researchers have analyzed the 

speed-flow relationship to find BP. However, the proposed methods to find BP are relatively 

complicated and computationally heavy [14, 15]. One simple and effective approach using 

standard deviations of speed measurements was offered by Roess [16]. This method is based 

on the assumption that the standard deviation of speed is low for flow values smaller than BP 

and begins to increase abruptly as flow is greater than BP. 

 

 

3. EXPERIMENTS 

 

3.1. The dataset and features 

 

Traffic flow and speed data are obtained from the performance measurement system (PeMS). 

PeMS is a freeway performance measurement system that supplies historical and real-time data 

collected from detectors in freeways throughout California [17]. The dataset includes readings 

of a dual-loop detector in the California SR-17 freeway. Four weeks of data from four different 

seasons of 2017 and 2018 (32 weeks of data in total) were used. The original dataset involved 
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speed and flow data collected for 5 minutes intervals. Therefore, three of these measurement 

intervals are combined to obtain a dataset for 15 minutes intervals. This combination procedure 

involves the calculation of total flow and average speed. Three consecutive flow data are added 

to obtain the total flow. On the other hand, the sum of speed data weighted by corresponding 

flow data is calculated for average speed. Thus, one hour of data is represented by four 

examples. 

The features extracted from the dataset may be collected under two categories; temporal 

features and measurement features. The temporal features are categorical and they denote “hour 

of day” and “day of week”. These features are represented by a one-hot encoding. Therefore, 

the dimensions of corresponding binary vectors for these categorical features are 24 and 7, 

respectively. The measurement features are continuous values and involve current and 

historical data for flow and speed. The historical data consists of measurements from one day 

before and one year before the time to be predicted. Hence, three features (current, yesterday, 

and last year) for two different measurements (speed and flow) are generated as a six-

dimensional feature vector. A representation of the feature vector is illustrated in Figure 3. 

 

 
 

Fig. 3. Representation of a sample feature vector 

 

3.2. Speed and flow prediction 

 

The experiments involved in this work may be collected into three major groups. First, for a 

prediction horizon of 15 minutes, speed and flow values are predicted using four different 

machine learning methods. The next step starts with generating speed-flow diagrams using the 

predicted values. These diagrams provide useful information for detecting traffic conditions of 

the relevant road segment. Therefore, the predicted values are used to calculate the BP flow, 

which is an important parameter for traffic analysis and modeling. In the final step, the state of 

the traffic is estimated by comparing the predicted flow value with the BP flow calculated in 

the second step. 

For speed and flow prediction, the dataset is split into training and test sets with proportions 

of 75 and 25%, respectively. To evenly distribute the seasonal data into these sets, the first three 

weeks from each season are merged to generate the training set and the following one-week 

data are merged to generate the test set. Instead of training a model for the prediction of every 

sample in the test set, only one model is sufficient to make predictions for all data in the test set 

as the traffic speed and flow patterns have similar structures throughout the day and week [18, 

19]. 

Using the MLPNN, SVR, GBDT, and kNN methods, four different models are trained and 

tested on these sets. Relevant parameters for these models are selected using 10-fold cross-

validation, and the corresponding prediction performance values are provided in the results 
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section.  It is important to note at this point that the speed and flow prediction is an intermediate 

step to determining BP flow. 

 

3.3. Determining breakpoint values 
 

It is critical to determine the first BP in the flow axis of the speed-flow relationship. The 

speed values up to this BP are considered to be constant. Hence, for the values greater than the 

BP, the speed values start to decrease while flow increases. Thus, it may be concluded that the 

standard deviation of speed value from the FFS increases after BP [16]. The use of standard 

deviation is a common method for determining BP in the literature [6, 20]. 

BP values using the actual ( actBP ) and predicted ( ANNBP , SVRBP , GBDTBP , kNNBP ) speed-flow 

distributions are calculated separately through the standard deviation method and the closeness 

of these BP values is observed. According to the standard deviation analysis, the flow axis is 

divided into a set of equally-sized ranges. Given a range, the corresponding standard deviation 

is calculated through equation 1: 

 

 

N

FFSxi 


2

  (1) 

 

where ix  is the speed values of the samples in the range, FFS  is the free-flow speed for the 

site, and N  is the number of observations belonging to the range. The size of the ranges is 

selected as 50 pc/15 min and the corresponding   values are calculated for flow rates greater 

than 200 pc/15 min. 

 

3.4. Estimating the state of traffic flow 
 

Calculation of BP flow allows the speed-flow space to be divided into two parts; stable and 

metastable regions. Therefore, the samples with flow values smaller than the calculated BP are 

estimated as “stable state”. The other samples that have flow values higher than the calculated 

BP are labeled as “metastable state”. 

This state estimation procedure is carried out on both the actual data and all predictions. The 

labels obtained through comparing actual data with actBP  are considered as ground truth. State 

estimation performance of each regression method is calculated by generating a confusion 

matrix using the ground truth labels and estimated labels. 

 

3.5. Performance metrics 
 

To evaluate the prediction performance of each machine learning method, four different 

metrics commonly used in the literature are calculated. These metrics are coefficient of 

determination (
2R ), root mean squared error (RMSE), mean absolute percentage error (MAPE) 

and mean absolute error (MAE). They are calculated as shown in equations 2-5 below: 
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where iy and ıŷ  are actual and predicted values for ith  test sample, y is the mean value of all 

actual values in the test set, n is the total number of samples in the test set. 

 

As for the performance of standard deviation method, first, actBP  is calculated using the 

actual target values provided in the test set. Next, ANNBP , SVRBP , GBDTBP , and kNNBP , are 

calculated using the prediction outcome of each individual method. The predicted BP  value 

giving the minimum residual with actBP  is concluded to be superior to the others. 

To determine the performance of flow state estimation, a confusion matrix is generated by 

considering the correct predictions of the metastable state as true positives (TP) and the stable 

state as true negatives (TN). False positives (FP) and false negatives (FN) are defined as 

misclassifications of stable and metastable states, respectively. 

Using the confusion matrix, the accuracy, specificity and sensitivity values are calculated as 

specified by equations 6-8: 

 

FNFPTNTP
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4. RESULTS AND DISCUSSION 

 

4.1. Results for speed and flow prediction 

 

The parameters of the used prediction methods have a direct impact on the performance. 

As stated earlier, 10-fold cross-validation is applied to the training set and the parameters with 

the best validation results are selected. The number of hidden units in the MLPNN model is 

determined as 40. The model is trained with a learning rate of 0.0001 and the rectifier linear 

unit is used as the activation function. Performance of the SVR model is evaluated on two 

separate models with different kernel functions. The first one (SVR-RBF) uses the Gaussian 

radial basis function (RBF) as the kernel. The regularization term (C ) and the threshold term  
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( ) are selected as 100 and 0.1, respectively. In addition, the standard deviation ( ) for the 

RBF kernel is set to 0.027. A polynomial kernel with a degree of 4 and a bias term of 1 is used 

in the other SVR model (SVR-POLY). This polynomial model has the parameter setting as 

80C  and 1.0 . The GBDT model, trained with a learning rate of 0.1, contains 300 

boosting steps and weak learners with a maximum depth of 3. 

For the kNN method, 9K  is selected. The relevant prediction results for speed and flow 

are provided in Tables 1 and 2. 

 

Tab. 1. 

Speed prediction results 

 

 MLPNN SVR-RBF SVR-POLY GBDT kNN 
2R  0.8564 0.8534 0.8263 0.8458 0.8398 

RMSE

(mph) 
1.4956 1.5111 1.6448 1.5496 1.5793 

MAPE 
(mph) 

0.0525 0.0514 0.0517 0.0507 0.0518 

MAE  
(mph) 

0.8298 0.7752 0.7996 0.7771 0.8290 

 

 

Tab. 2.  

Flow prediction results 

 

 MLPNN SVR-RBF SVR-POLY GBDT kNN 
2R  0.9862 0.9850 0.9858 0.9839 0.9829 

RMSE

(mph) 
57.6910 60.1981 58.6689 62.3388 64.3020 

MAPE 
(mph) 

2.7234 2.7147 2.7190 2.7151 2.7122 

MAE  
(mph) 

39.6470 40.8914 40.0278 42.5258 43.3346 

 

 

As observed from the 
2R  values in both tables, the models are better at predicting traffic 

flows containing less rapid changes than speed data. Among the predictive models, MLPNN 

has the highest 
2R  and the lowest RMSE  for both cases. For speed prediction,  MAPE of 

GBDT and MAE  of SVR-RBF are lower than the other methods by 0.0018 and 0.0546, 

respectively. Similarly for flow prediction, the lowest values for MAPE and MAE  are obtained 

by kNN and MLPNN, respectively. Actual data and predictions with MLPNN for a one-day 

duration are given in Figure 4, while scatter plots of predicted data versus actual data are 

provided in Figure 5. Majority of the predictions with a higher error are in the low speed, high 

flow region. This is the region belonging to the metastable traffic flow, and it corresponds to 

a relatively small period of one-day timespan. Thus, the proportion of data related to 

the metastable state is low indicating that the methods have limited learning on this state. 
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Although inspecting the quantitative results in Tables 1 and 2 makes it possible to determine 

which method has a better prediction performance, it may be difficult to draw a final conclusion 

about the best method as the prediction results are very close to each other. Very small standard 

deviation of 
2R values for speed ( 0107.0 ) and flow ( 0012.0 ) predictions are 

indicators for this. 

 

 
(a) 

 
(b) 

Fig. 4. Actual data and MLPNN predictions for: (a) speed,  

(b) flow for a duration of one day 

 

 

 
(a) 

 
(b) 

Fig. 5. Actual data and MLPNN predictions for: (a) speed,  

(b) flow for a duration of one day 

 

4.2. Results for BP calculation  

 

The predictions made by the machine learning methods are used to calculate the BP flow 

value. For this purpose, the standard deviation method is applied to actual speed and flow data 

as well as their predictions. The speed-flow distribution for actual data and corresponding 

predictions with the MLPNN method is given in Fig. 6.  
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(a) (b) 

Fig. 6. Scatter plots of speed versus flow for: (a) actual data and (b) MLPNN predictions  

 

Calculating BP involves determining standard deviations of speed values within specified 

flow ranges. FFS  value for standard deviation calculation is obtained by averaging the speed 

values in the first flow portion (corresponding to 50 minimum flow values) [20]. To observe 

the change in standard deviation for consecutive flow ranges, related plots for all prediction 

methods, as well as the actual data, are generated (Figure 7). The BP is defined as the flow 

value where there is a significant increase in the standard deviation. The smallest flow value at 

which the first derivative of the standard deviation is greater than 0.1 is determined as the BP. 

For all the predicted data and the actual data, standard deviation analysis outputs identical BP 

(1050 pc/15 min). 

 

4.3. Results for state of flow estimation 

 

The speed-flow distributions with calculated BP levels are visualized for actual data and 

MLPNN predictions in Figure 8. Quantitative results of estimation obtained with different 

methods are given in Table 3. The state estimation accuracy is highest for the MLPNN method. 

On the other hand, kNN and SVM-POLY methods have better specificity and sensitivity values, 

respectively. This means that the rate of true positive estimations is higher with SVM-POLY; 

hence, it is better at detecting metastable states. Conversely, a high true negative rate for kNN 

means that this method is relatively more successful than others in estimating the stable states 

of traffic. However, the best overall accuracy is obtained via the MLPNN method, which has 

the highest 
2R  value for regression as well. 

The average flow of misclassified samples is 1050.62 pc/15 min and the corresponding 

standard deviation is 77.01 pc/15 min. Therefore, it is possible to conclude that majority of the 

misclassifications are in the vicinity of the calculated BP. 

 

Tab. 3.  

Results for state of flow estimation 

 

 MLPNN SVM-RBF SVM-POLY GBDT kNN 

Accuracy 0.9702 0.9649 0.9676 0.9608 0.9691 

Specificity 0.9704 0.9566 0.9618 0.9618 0.9731 

Sensitivity 0.9700 0.9712 0.9720 0.9602 0.9661 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 7. Standard deviations versus flow for: (a) actual data, (b) MLPNN,  

(c) SVR-RBF, (d) SVR-POLY, (e) GBDT, (f) kNN predictions 

 

 

5. CONCLUSIONS 

 

In this work, a method to estimate the state of traffic for 15 minutes ahead is proposed. In 

contrast with the majority of related papers in which only speed or flow predictions are made, 

this method involves predicting and further processing of both of these data. Using these 

predictions, speed-flow diagrams are generated and then BP flow is calculated as the separating 

threshold between two traffic states: stable and metastable. As the final step, the predicted 
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samples are labeled with one of these states as the estimation of the traffic state. Although the 

highest prediction and state estimation performance are obtained via the MLPNN method, the 

results obtained through other methods are very close to it. Besides, BP flow values calculated 

using the predicted values are all identical and they are also equal to the BP flow calculated 

using the actual data. This indicates that speed and flow predictions are capable of representing 

the state transition despite some errors in the predictions. 

The samples having lower speed and higher flow values are related to the metastable state 

and the proportion of this data is relatively small. Therefore, the patterns in the metastable data 

cannot be learned well. Eventually, the error on the predictions of the samples of this state is 

high. To eliminate the imbalance in the data, increasing the number of samples belonging to the 

metastable state may be considered as a future work. 

 

 

  
(a) (b) 

Fig. 8. Scatter plots showing the stable and metastable regions for: (a) actual data  

and (b) MLPNN predictions after BP calculation 
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