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DYNAMIC STABILITY OF A MODEL OF A TRACTOR-LORRY-

TRAILER COMBINATION 
 

Summary. In this paper, we consider the mobility and stability of a model of a 

tractor-lorry-trailer combination, consisting of a two-axle tractor and a single-axle 

semi-trailer, and its possible stationary states with fixed steering. A feature of this 

research is the study of a non-linear mathematical model of a two-link tractor-

lorry-trailer combination. The set of steady-state conditions for the movement of 

the tractor-lorry-trailer combination model is determined on the basis of the 

developed mathematical model; it provides the necessary mobility for the passage 

of the circular overall traffic lane. The range of stable steady-state conditions of 

the road train is limited and the character of the loss of stability in the direct 

motion of the road train (divergent, flutter) is checked. The phase portraits of the 

system are constructed at different speeds, which allow us to estimate the range of 

attraction for direct motion. Stability issues are also considered, namely, the 

influence of the control parameters (θ, v) on stability or instability. 

Keywords: dynamic stability; mobility of tractor-lorry-trailer combination; 

steady-state condition 
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1. INTRODUCTION 

  

Fast and economical delivery of indivisible wide loads in many industries is becoming 

increasingly important [1]. Road trains play a major role in solving this problem [2-5]. Their 

operation can be complicated by design features, primarily the limited manoeuvrability of 

long road trains in restricted urban conditions [6-8]. 

In this case, a double (two-trailer) road train is considered, which  consists of a leading link 

(tractor) and a driven link (semitrailer). 

The mathematical model of the canonical road train is the object of research for many 

authors, where the results of analysis of linearized models are mainly presented [9-13]. 

The specificity of this paper is the study of the non-linear mathematical model of a double 

road train, whose aim is to find possible rearrangements of the road train configuration in 

different initial disturbances of phase variables. This requires non-standard analysis methods 

(phase portrait construction and evaluation of the domain of attraction for stable steady-state 

regimes). 

The purpose of the paper is as follows:  

a) Investigate the manoeuvrability and stability of the model of a double road train 

b) Determine a set of stationary traffic conditions, which provides the necessary 

manoeuvrability by passing a circular overall lane  

c) Estimate domains of attraction for a stable steady-state regime  

d) Check the type of stability loss in direct motion (divergent, flutter) 

  

2. CONSTRUCTION OF A MATHEMATICAL MODEL FOR SEMI-TRAILER 

TRUCK MOTION 

 

For the most complete description of and research into possible stationary states of a semi-

trailer truck (Fig. 1) with rigid steering, it is necessary to choose a suitable mathematical 

model and applicable state variables (Fig. 2). 

 

 
 

Fig. 1. Model of semi-trailer truck 

 

The front axle of the tractor can be turned by an angle θ. The connection between the links 

is carried out by a cylindrical hinge, which enables the free relative rotation of the links in the 

plane of motion. 

The configuration of each link is described by coordinates xi and yi, its centre-of-mass Сi 

and course angle ψi (it is enclosed between the longitudinal axis of the corresponding link and 

the X-axis of the fixed coordinate system). 

The system parameters are as follows:  

v - longitudinal velocity component of the centre of mass of the tractor  
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a; b - distance from the centre of mass of the tractor to the attachment point of the front and 

back axles of the tractor  

c - distance from the centre of mass of the tractor to the hitch point with the back link  

d1 - distance from the centre of mass of the back link to the hitch point  

2K - overall width of the road train  

kf - friction coefficient 

k1, k2, k3 - the factors influencing lateral skid on the axes  

χ1, χ2, χ3 - adhesion factors in determining the force of lateral skid 

θ - assignable wheels’ turning angle for the subordinate module 

Y1, Y2, Y3 - lateral reaction of the highway area 

 

 
 

Fig. 2. Traffic plan of a semi-trailer truck 

 

If we assume that С, С1 are the mass centres of the tractor and semi-trailer), m, m1 are the 

masses of the tractor and semi-trailer, I, I1 are the central moments of inertia about the vertical 

axes, ω=ψ́, ω1=ψ́1 are absolute angular velocities of the driving and driven links, and φ is the 

angle of folding (it is enclosed between the longitudinal axes of the tractor and semitrailer), 

then  1 . 

We set the absolute velocities of points С, С1 by their resolution along the axes of the 

corresponding bases: 
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The differential equation system of motion for the semi-trailer truck describes the variation 

in phase variables (u,  ,φ, Φ), where: u - cross speed of the centre of mass of the tractor 

(quasi-velocity); U - its derivative in the moving coordinates;  - angular acceleration relative 

to the vertical axis; and Φ - velocity of jack-knifing angle φ. 
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Among the different theories for the rolling of elastically deformable wheels, the field of 

axiomatics has become the most widespread, according to which the lateral reaction Yi of the 

highway area is applied in tooth bearing centre of the rolling elastic wheel, which is a 

function of slip angle δi. 

The reduced angles of lateral skid of the wheel axles are given by the following 

expressions: 
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The dependencies of the forces of lateral skid are of empirical origin [2] and can be 

approximated by expressions (the strictly increasing function is the rate of the curve of 

saturation): 
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where Zi is the reaction of the bearing area on the axes. 

We neglect the redistribution of normal reactions between the lateral wheels and instead 

consider the lateral wheels of each axis that is replaced by one reduced wheel with a centre in 

the middle of the axis: 
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2.1. The derivation of the system of equations in the normal Cauchy form  

 

The derivation of the differential equations for the plane-parallel motion of a semi-trailer 

truck is performed by the cut set method [4]. 

Using this method, we obtain the following equations for the plane-parallel motion, which 

in axial projections are invariably associated with links for the tractor and semi-trailer, 

respectively: 

a) The motion equations of the tractor are: 
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b) The motion equations of the trailer are: 
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We eliminate the internal forces X, Y of the interaction of subsystems from Eqs. (5) and 

(6), and we obtain a system of non-linear differential equations in (7): 

a) With variable quantity v: 
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b) With variable quantity u: 
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c) With variable quantity ω: 
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d) With a jack-knifing angle: 
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Consider a uniform motion, then v=const; therefore, V=0. We substitute into the system of 

equations in (7) the value V=0 and solve it in relation to the higher derivative (U, PP, Ω), 

where PP is the angular acceleration of the driven link relative to the vertical axis. 

We get a system of equations in the normal Cauchy form (8): 
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3. NUMERICAL ANALYSIS RESULTS OF THE MATHEMATICAL MODEL OF 

THE ROAD TRAIN 

 

Applying the numerical methods of integration in the Maple package, we get the following 

numerical analysis results for the mathematical model of a road train: 

1. Locating a road train under circular steady-state conditions of motion 

Circular trajectories of all points of a double road train on a road plane meet the stationary 

solutions (that is, the equilibrium state, singular points and rest points), in which ω=const, 

u=const, φ=const of the system with v=const, and θ=const. 
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Setting the system parameters: 
m=6,500 kg; m2=36,500 kg; a=0.4 m; b=3.2 m; c=2.7 m; b1=2.8 

m; d1=5.4 m;  

v=4.5 m/s; θ=0.38; k1=160,000 H; k2=326,000 H; k3=365,000 H;  

J=0.35∙m∙a∙b (kg∙m2); J2=0.8∙m1∙d1∙b1 (kg∙m2); i=0.8; К=1.5 m 

The given parameters and values of the control parameters v and θ are substituted in the 

systems of equations in (8), which we then solve to obtain the following results. 

Thus, the circular steady-state conditions correspond to the values of v=4.8 m/s and θ=0.42 

rad; the trajectory of the tractor’s centre-of-gravity motion in the plane of the road and the 

position of the tractor are shown in Fig. 3. 

We obtain a circular stationary regime with v=5 m/s and θ=0.36 rad, as shown in Fig. 4. 

The attitude of the road train is shown when moving along a circular corridor in Figs. 3 and 

4, limiting the dimensions of which correspond to EU standards. It can be seen that, for the 

given control parameters, in the first case, the semi-trailer and, in the second case, the tractor 

and semi-trailer go beyond the dimensions of the corridor. 

 

  
 

Fig. 3. Trajectory of the tractor’s centre-of-gravity motion in the plane of the road 

(v=4.8 m/s and θ=0.42 rad) 

 

  
 

Fig. 4. Trajectory of the tractor’s centre-of-gravity motion in the plane of the road 

(v=5 m/s and θ=0.36 rad) 

 

Thus, there are values of v and θ at which the road train will pass a circular corridor, fitting 

its dimensions. 
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Control parameters were selected by the method of progressive approximation v=5 m/s and 

θ=0.36 rad, which corresponds to a circular steady-state condition with a trajectory. This is 

shown in Fig. 5. 

 
 

Fig. 5. Trajectory of the tractor’s centre-of-gravity motion in the plane of the road 

(obtained by numerical integration in the Maple package) 

 

This trajectory corresponds to the passage by a road train of a circular corridor, the 

dimensions of which correspond to EU standards, as shown in Fig. 6. 

 

  

а) b) 

  
c) d) 

 

Fig. 6. A double road train passes a circular corridor (corridor dimensions comply with EU 

standards): a) entering the corridor; b-d) passing of the corridor 
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2. Determination of the stability range of the rectilinear regime in the parameter space 

(analytical and numerical definition of the critical speed of rectilinear motion) 

The linear approximation of the initial system is used for the numerical determination of 

critical velocity. The eigenvalue spectrum is determined for the different parameter value v. 

This approach makes it possible to establish the existence of stability (instability) for a pattern 

of design factor. The method of interval bisection facilitates the determination of the moment 

of the loss of stability (vkr) [3]. 

Take, for example, the following set of parameters: m=6,500 kg; m2=36,500 kg; 
a=0.4 m; b=3.2 m; c=2.7 m; b1=2.8 m; d1=5.4 m; k1=160,000 H; 

k2=226,000 H; k3=270,000 H; J=0.35∙m∙a∙b (kg∙m2); J2=0.8∙m1∙d1∙b1 (kg∙m2); 

i=0.8; θ=0; К=1.5 m 

This corresponds to the eigenvalue spectrum at the value v=20 m/s: 
eigv -0.6241640318 1.342794302 I -0.4253230590 -1.932232332, , , := 

-0.6241640318 1.342794302 I  
The eigenvalue spectrum of the system (8) at v=20 m/s is shown in Fig. 7. 

Since the roots of the performance equation of a system experiencing variations are 

negative real parts, according to the Lyapunov theorem, the linear traffic condition is stable. 

 

 
 

Fig. 7. The eigenvalue spectrum of the system (8) at v=20 m/s. 

 

We have at v=35 m/s: 
eigv 0.08371808044 -0.3860627656 1.512924892 I -1.372097383, , , := 

-0.3860627656 1.512924892 I  
If one real root is positive, then the regime is unstable. 

The eigenvalue spectrum of the system (8) at v=35 m/s is shown in Fig. 8. 

Consequently, there is a loss of stability in the linear motion in the speed range 

20 m/s<v<35 m/s. The zero eigenvalue corresponds to the velocity value vкр (the so-called 

critical case of one zero root involves a divergent loss of stability). In this case, the initial 

perturbations of the phase variables are grown aperiodically. The case of a couple of complex 

eigenvalues with zero real parts corresponds to a periodic increase in the initial perturbations 

of the phase variables, leading to flutter instability. 

We have at v=31 m/s:  
eigv 0.0007759302256 -0.4319365867 1.490179879 I -1.463279177, , , := 

-0.4319365867 1.490179879 I  
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Fig. 8. The eigenvalue spectrum of the system (8) at v=35 m/s 

 

The eigenvalue spectrum of the system (8) at v=31 m/s is shown in Fig. 9. 

One of the real roots with some degree of accuracy is equal to zero, that is, a divergent loss 

of stability is going to occur at the velocity value vkr=31 m/s. 

The analytic expression for determining the critical velocity is given by: 
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Fig. 9. The eigenvalue spectrum of the system (8) at v=31 m/s 

 

The numerical value of the critical velocity for the selected parameters of the system is 

vkr=30.97 m/s. This result confirms the results of the trial-and-error method. 

It follows from (9) that vkr depends on a certain design factor. We analyse how the value 

vkr changes with the variation in the parameters L1 and m1. 

If we only change the mass of the semi-trailer in the design factors of the system, as 

presented in Fig. 10, we obtain the dependence of critical velocity on the mass of the 

semitrailer vkr=f(m1). 
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Fig. 10. Graph of the dependence of critical velocity  

on the mass of the semitrailer vkr=f(m1) 

 

 

If we assume m1=33,000 kg, we can determine that the divergent loss of stability comes at 

a value of vkr=123 m/s. The flutter loss of stability under certain conditions could happen 

earlier than at the divergent stage. As such, it is necessary to check what happens with a 

flutter loss of stability at lower values vkr, as well as determine the eigenvalue spectrum of the 

system under vkr=120 m/s: 
eigv -0.1835379687 1.848346011 I -0.1439906210 0.5802589752 I, , := 

-0.1439906210 0.5802589752 I -0.1835379687 1.848346011 I,  
Since the real parts of the roots are negative, the flutter loss of stability does not set in, that 

is, the regime is stable. 

Changing the position of the centre of gravity of the semi-trailer, that is, varying the ratio 

d1/b1, we get the following dependence of the critical velocity: 

 

 
 

Fig. 11. Graph of the dependence of the critical velocity on the ratio d1/b1 (vkr=f (d1/b1)) 

 

 

From the graph, it follows that critical speed value will decrease when the semi-trailer’s 

centre of gravity in relation to the hitch point is approximated. 
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4. MODELLING OF PHASE PORTRAITS OF THE MODEL (ANALYSIS OF THE 

STABILITY REGION OF THE RECTILINEAR REGIME) 

 

The system (7) is allowed an obvious solution {v=const; u=0; =0; =0; φ=0; Φ=0} with 

balanced longitudinal forces (X1=0; X2=0; X3=0). This corresponds to the uniform rectilinear 

motion of the road train (stationary rectilinear mode). The set of steady-state conditions is 

determined by the system (7) in which we substitute the following values: U=0; =0; Φ=0; 

PP=0. 

We take the control parameter of the system v=20 m/s and θ=0 and construct a phase 

portrait in the space of variables (u, ω). The system comprises three steady-state conditions. 

These regimes correspond to three singular points on the phase plane: at the origin of 

coordinates of the stable node (it corresponds to a rectilinear regime) and two saddle points 

that are symmetrically located (they correspond to unstable circular regimes). Saddle special 

points are approximated to the origin of coordinates according to an increase in the parameter 

v. The stability of the rectilinear regime is wrecked at v=vkr. The domain of stability of the 

rectilinear regime limits the incoming separatrix of the saddle points [6], as shown in Fig. 12. 

The coordinates of the saddle points were numerically determined using the Maple 

package as a solution to the system of non-linear equations (7): 

(u=-5.279; φ=-0.0653; ω=0.2198); (u=5.279; φ=0.0653; ω=-0.2198) 

The phase portrait of the system at v>vkr is discussed in Fig. 13. 

The system is one unstable rectilinear traffic condition, which corresponds to a saddle 

singular point at the origin of coordinates. The initial perturbations grow aperiodically, which 

should correspond to the phenomenon of skidding. The phase variables in this case are close 

to the stable separatrices of the saddle. The coordinates of the saddle singular point are as 

follows: (u=0; φ=0; ω=0). 

 

 
 

Fig. 12. Phase portrait of the system at subcritical velocity 
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Fig. 13. Phase portrait of the system at supercritical speed 

 

 

5. CONCLUSION 

 

Stability problems, namely, the influence of motion parameters on stability (instability), 

are considered. The graphs of the dependence of the critical velocity on the mass of the semi-

trailer and its geometric parameters are constructed. These dependencies make it possible to 

determine the design factors of the system. This corresponds to a divergent loss of stability. 

Flutter loss of stability under the considered parameters is not found. 

Phase portraits of the system are constructed at different speeds, which makes it possible to 

estimate the domain of attraction of linear motion. The domain of attraction of the rectilinear 

regime is limited by separatrices. The initial values of the phase variables can be estimated in 

phase portraits, leading to the conclusion that the system exists in the stability domain. The 

implementation of these initial disturbances can result from external influences (crosswind, 

impact with the edge of the roadway etc.). 

The values of the speed (v) and the steering angle (θ) are determined for the selected 

design factors of the model, which ensures the passage of the road train along the circular 

overall corridor. 
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