Paweł ROMANOWICZ¹, Henryk SANECKI²

WPŁYW WCISKU POMIĘDZY KOŁEM A CZOPEM OSI POJAZDU SZYNOWEGO NA STAN NAPRĘŻEŃ W STREFIE PRZEJŚCIOWEJ

Streszczenie. Przedmiotem pracy jest analiza wpływu wcisku pomiędzy kołem a czopem osi pojazdu szynowego, a także wybranych wymiarów osi na stan naprężeń w strefie przejściowej w sąsiedztwie połączenia: piasta koła - czop osi. Istotną rolę w działaniu występującego tam karbu zmęczeniowego odgrywa połączenie wciskowe i należy zbadać jego ilościowe oddziaływanie na efekty naprężeniowo-odkształceniowe. Do zbadania zjawiska zastosowano metodę elementów skończonych z elementami trójwymiarowymi oraz z kontaktem. Zagadnienie jest ważne ze względu na coraz większą prędkość jazdy współczesnych pojazdów pasażerskich oraz na zagrożenie nie tylko z powodu utraty nośności osi, ale także ze względu na możliwość występowania poślizgu pomiędzy kołem a osią.

Słowa kluczowe: osie pojazdów szynowych, połączenie wciskowe, koncentracja naprężeń, MES

EFFECT OF INTERFERENCE FIT BETWEEN WHEEL HUB AND AXLE SEAT OF A RAIL VEHICLE ON STRESSES IN A TRANSITION ZONE

Summary. The main goal of the study is investigation of the effect of an interference fit between the wheel hub and the axle of a rail vehicle as well as some axle dimensions on the state of stress in the transition zone in vicinity of the connection: hub wheel - axle journal. An important role in behaviour of the fatigue notch occurring there plays the interference fit. The influence on the quantitative effects of the stress-strain state is to be considered. In order to investigate this phenomenon the finite element method with use of the three-dimensional elements and the contact was applied. The problem is important because of the increasing speed of modern passenger vehicles. Additionally, a threat occurs not only because of the loss of capacity of the axle, but also because of the possibility of slip between the wheel and the axle journal.

Keywords: railway axles, interference fit, stress concentration, FEM

¹ Instytut Konstrukcji Maszyn, Politechnika Krakowska, ul. Warszawska 24, 31-155 Kraków, Poland, e-mail: promek@mech.pk.edu.pl.

² Instytut Konstrukcji Maszyn, Politechnika Krakowska, ul. Warszawska 24, 31-155 Kraków, Poland, e-mail: hsa@mech.pk.edu.pl.

1. WPROWADZENIE

Przedmiotem pracy jest analiza wpływu wcisku pomiędzy kołem a czopem osi wózka pojazdu szynowego pasażerskiego, a także wybranych wymiarów osi, na stan naprężeń w strefie przejściowej występującej w sąsiedztwie połączenia: piasta koła - czop osi (tzw. podpiaście). Kolejowe dokumenty normatywne dotyczące osi podają konkretne wytyczne konstrukcyjne m.in. dla ww. strefy przejściowej. Zgodnie z nimi, strefa ta powinna charakteryzować się zmianą średnicy osi z dużej na mniejszą w stosunku równym co najmniej 1.15 lub 1.12 dla stanu po renowacji, przy czym w niektórych pojazdach stosunek ten jest nawet mniejszy. Oznacza to, że istotną rolę w działaniu karbu zmęczeniowego odgrywa połączenie wciskowe i należy zbadać jego ilościowe oddziaływanie na efekty naprężeniowo-odkształceniowe. Zagadnienie jest ważne ze względu na coraz większą prędkość jazdy współczesnych pojazdów pasażerskich oraz na zagrożenie nie tylko z powodu utraty nośności wału, ale także ze względu na możliwość występowania poślizgu pomiędzy kołem a czopem osi, co przyczynia się m.in. do szkodliwego przegrzewania się osi.

Przedmiotem pracy jest analiza wytrzymałościowa osi wózka pojazdu pasażerskiego, obciążonej jak na rys. 1. W tym celu uwzględniono aktualne uregulowania normatywne dotyczące tej tematyki zgodne z Dyrektywą KE (TSI) [1] oraz normą EN 13104 [2]. Szczególną uwagę zwrócono na zagadnienie koncentracji naprężeń w przejściu z podpiaścia (czopa) koła jezdnego o średnicy $d_4 = d_5 = \emptyset195$ u6 na część zaokrągloną promieniami R15 i R75, a potem na część walcową o średnicy $d_6 = \emptyset180$.

Rys. 1. Wymiary i obciążenia zestawu kołowego z napędem Fig. 1. Wheelset with powered axle; dimensions and loadings

Zgodnie z rys. 2, w rozważanej osi przejście z czopa koła na gładką część charakteryzuje się stosunkiem średnic równym $d_5/d_6 = 195/180 = 1,083$, co jest niezgodne z wytycznymi normy [2], która wymaga, aby ten stosunek wynosił co najmniej 1.12 dla osi regenerowanej.

Niniejsze opracowanie ma na celu zbadanie, jakie skutki z punktu widzenia wytrzymałości zmęczeniowej może spowodować niespełnienie ww. warunków dla stosunku średnic d_5/d_6 .

Do analiz przyjęto następujące parametry techniczne:

- masa 1 zestawu kołowego 1526 kg,

- materiał osi: stal EA4T (25CrMo4), tab. 1.

2. KRYTERIA OCENY WYTRZYMAŁOŚCIOWEJ

Poniżej przedstawiono tabelę 1, zawierającą wartości naprężeń dopuszczalnych dla materiału osi. Naprężenia te, po uwzględnieniu odpowiedniego współczynnika bezpieczeństwa *S*, nie powinny być przekroczone pod wpływem obciążeń działających na oś.

Tabela 1

Wymagane współczynniki bezpieczeństwa *S*, naprężenia dopuszczalne σ_{lim} i inne dane materiałowe analizowanej osi pojazdu szynowego

	Nazwa Sym		ymbol Wartość		
	Rodzaj stali		EA4T (25CrMo4)		
	Moduł Younga	<i>E</i> =	2,1×10 ⁵ MPa		
Dawa	Liczba Poissona	ν =	0,3		
Dane	Gęstość	ρ=	$7,86 \times 10^3 \text{ kg/m}^3$		
ogólne	Granica plastyczności	$R_{\rm p02} =$	546 MPa (min. 420)		
ogome	Wytrzymałość na rozciąganie	$R_{\rm m} =$	710 MPa (650-800)		
Materiałowe ogólne Oś napędna z wtłoczonym kołem lub zębnikiem przekładniowym	Odkształcenie maksymalne	<i>A</i> =	20,1% (min. 18)		
Oś napędna z wtłoczonym kołem lub zębnikiem przekładniowym	Wymagany współczynnik bezpieczeństwa	<i>S</i> =	1,66		
	Naprężenie dopuszczalne, strefa 1 ¹⁾	$\sigma_{lim} =$	145 MPa	[2], tab. 9	
	Naprężenie dopuszczalne, strefa 2 ²⁾	$\sigma_{lim} =$	87 MPa		
	Wymagany współczynnik bezpieczeństwa	S =	1,44		
Inne przypadki	Naprężenie dopuszczalne, strefa 1 ¹⁾	$\sigma_{lim} =$	167 MPa	[2], tab. 9	
	Naprężenie dopuszczalne, strefa 2 ²⁾	$\sigma_{lim} =$	101 MPa		
 Oś, osadzenia łożysk ślizgowych, zaokrąglenia powierzchni przejściowych, dna rowków Osadzenia: kół, tarcz, łożysk tocznych, kołnierzy 					

3. OBCIĄŻENIA DZIAŁAJĄCE NA OŚ

3.1. Zdefiniowanie obciążeń

Na oś działają następujące obciążenia (zgodnie z [2]):

- od mas znajdujących się w ruchu,

- od hamowania,

- od napędu.

Konkretne przypadki i wzory pozwalające na obliczenie wartości liczbowych obciążeń podaje norma [2]. Schemat tych obciążeń i charakterystycznych wymiarów zestawu kołowego wraz z zaznaczonym napędem przedstawiono na rys. 1, a zestawienie wartości liczbowych wymiarów podano w tab. 2.

Na rys. 3 przedstawiono schemat dla lewej części analizowanej osi napędnej. Zawierają one numery i oraz współrzędne y_i położenia przekrojów charakterystycznych względem środka lewego czopa łożyskowego.

Tabela 2

Zestawienie	podstawowych	wymiarów zesta	awu kołowego	wg rvs. 1. w mm
	poublanonjon	Wynnarow Look	and Rolonego	" <u>S</u> 1,5.1, " IIIII

s =	750	$y_1 =$	788,5	<i>R</i> =	420
<i>b</i> =	1000	$y_2 =$	1141,75	$h \approx$	1620
$D_b =$	566	$y_3 =$	1216,2	$h_1 \approx$	1620 - 420 = 1200

Rys. 2. Wymiary i numery charakterystycznych przekrojów dla lewej części osi Fig. 2. Dimensions and numbers of characteristic cross-sections for left-hand side of axle

3.2. Obliczenie wartości liczbowych obciążeń

Zgodnie z normą [2], do obliczeń obciążeń od mas znajdujących się w ruchu należy użyć mas m_1 i m_2 , zdefiniowanych w tab. 1 i określonych w tab. 2 tej normy, a mianowicie:

- m_1 masa pojazdu przypadająca na czopy zestawu kołowego (łącznie z masą łożysk i maźnic),
- m_2 masa zestawu kołowego oraz dodatkowe masy nieodsprężynowane, znajdujące się na zestawie kołowym między płaszczyznami tocznymi (np. elementy napędu itp.),

 m_1+m_2 – masa pojazdu związana z rozważanym zestawem kołowym, działająca na tor.

Wobec braku dokładnych danych dotyczących obciążeń pojazdu przyjęto, że masa pojazdu przypadająca na czopy zestawu kołowego m_1 – potrzebna do obliczeń zgodnie z normą [2] – może być obliczona ze wzoru:

$$m_1 + m_2 = R_{max}/g,\tag{1}$$

gdzie:

 m_2 – wyżej zdefiniowana masa zestawu kołowego wraz z dodatkowymi masami nieodsprężynowanymi na zestawie kołowym między płaszczyznami tocznymi; w tym przy-padku są to elementy przekładni zębatej i napędu; suma jest równa 1526+560 = 2086 kg,

 R_{max} – nacisk zestawu kołowego wózka równy wg dokumentu [3] 160 kN/oś. Na podstawie zależności (1) szukana wielkość wynosi $m_1 = R_{max}/g - m_2 = 14$ 224 kg.

Zgodnie z normą [2] (tab. 3), mamy następujące wartości sił (oznaczenia jak na rys. 1): $P_1 = (0,625+0,0875h_1/b) m_1g = 106501 \text{ N}, P_2 = (0,625-0,0875h_1/b) m_1g = 67919 \text{ N},$ $Y_1 = 0,35 m_1g = 48838 \text{ N}, Y_2 = 0,175 m_1g = 24419 \text{ N}, H = Y_1 - Y_2 = 0,175 m_1g = 24419 \text{ N},$ $Q_1 = \frac{1}{2} [P_1 (b/s+1) - P_2 (b/s-1) + H R/s + m_2g] = 130001 \text{ N},$ $Q_2 = \frac{1}{2} [P_2 (b/s+1) - P_1 (b/s-1) - H R/s + m_2g] = 64884 \text{ N}.$

Do obciążeń wyznaczonych powyżej dochodzą siły od hamowania oraz od napędu. Dla celów niniejszej analizy zakłada się, że tarcze hamulcowe znajdują się na kołach jezdnych, a hamowanie wywołuje siły tarcia działające pionowo w dół. Dodają się one do sił P_1 i P_2 , rys. 1. Powstaje również pewien moment skręcający oś, wywołany nierównomiernością sił hamowania, np. podczas jazdy po łukach. Wartość tego momentu może być ustalona eksperymentalnie lub w przybliżeniu wg normy [2]. Obciążenie od napędu dość często jest pomijane, nie występuje ono bowiem jednocześnie z momentem skręcającym od nierównomiernego hamowania. W niniejszej analizie uwzględniono jedynie ciężar przekładni, ponieważ zwiększa on moment zginający działający w osi.

4. ANALIZA NUMERYCZNA POŁĄCZENIA WCISKOWEGO

Celem prowadzonych badań była analiza wpływu wcisku na wytężenie w karbie tuż za odsadzeniem. W pracy rozpatrzone zostały dwa rozwiązania konstrukcyjne, różniące się średnicą osi d_6 za odsadzeniem. W wariancie A przyjęto proporcję $d_5/d_6 = 1,083$, natomiast w wariancie B – $d_5/d_6 = 1,134$ (d_5 – średnica czopa, na którym osadzone jest z wciskiem koło jezdne, rys. 2). Wstępne obliczenia numeryczne wykonano przy użyciu dwuwymiarowego modelu, z uwzględnieniem osiowej symetrii (rys. 3). W celu uzyskania dokładniejszego rozwiązania zastosowano elementy wyższego rzędu (elementy PLANE82 i CONTA172 programu ANSYS, [4]). W analizie numerycznej i analizie teoretycznej założono równomierny rozkład nacisków po obwodzie czopa wału. Na tym etapie rozważań pominięte zostały pozostałe obciążenia osi (momenty zginające oraz skręcające). Wykonane badania zbieżności rozwiązania wykazały pewne osobliwości w modelu numerycznym. Dotyczy to przede wszystkim końcowych stref kontaktu, w których to naprężenia kontaktowe silnie zależą od gestości siatki i wraz ze zmniejszaniem wielkości elementów daża do nieskończoności (rys. 3b). Jednakże wykonane obliczenia dla różnych gestości siatki elementów skończonych wykazały brak wyraźnego wpływu tego zjawiska na wartości składowych tensora naprężeń i na napreżenia zastępcze liczone wg hipotezy Hubera-von Misesa-Hencky'ego (H-M-H) w analizowanym karbie osi.

Obliczenia teoretycznych i numerycznych nacisków kontaktowych wykonano dla maksymalnego wcisku, jaki teoretycznie może wystąpić w rozpatrywanym połączeniu. Wcisk

względny w tym przypadku wynosił $w_{wzgl} = w = 0,136\%$. Teoretyczny nacisk określono ze wzoru ([5], [6]):

$$p = \frac{w \cdot E}{k_1 + k_2},\tag{2}$$

gdzie:

*k*₁, *k*₂ – bezwymiarowe współczynniki zależne od geometrii elementów połączenia odkształceniowego oraz od współczynnika Poissona v,

E – moduł Younga.

Otrzymane wyniki przedstawiono na wykresie (rys. 3b) w odniesieniu do długości czopa L.

- Rys. 3. Fragment modelu MES 2D do analizy połączenia odkształceniowego koła jezdnego z osią kolejową (a); rozkłady nacisków kontaktowych teoretycznych i obliczonych numerycznie w połączeniu odkształceniowym (b)
- Fig. 3. 2D numerical model with finite element mesh (a) and distribution of theoretical and numerical contact stresses in fit press connection (b)

Zaobserwowano, że dla mniejszych proporcji średnic d_5/d_6 wpływ połączenia odkształceniowego jest bardziej niekorzystny. Skutkuje to przede wszystkim wzrostem wytężenia maksymalnego w karbie. W analizowanym przykładzie dla wariantu A wytężenie σ_{HMH} było prawie o 11% większe niż dla rozwiązania z wariantu B (szczegóły w tab. 3).

Tabela 3

Składowe stanu naprężenia oraz wytężenie w analizowanym karbie dla różnych wersji (A, B) rozwiązań konstrukcyjnych

Wariant	σ _x [MPa]	σ _y [MPa]	σ _z [MPa]	τ_{xy} [MPa]	σ _{HMH} [MPa]
А	3	38	-3	10	42
В	2	36	-2	8	38

W celu uwzględnienia momentów zginających na wytężenie wykonane zostały obliczenia 3D przy użyciu elementów bryłowych (SOLID95), kontaktowych (CONTA174 i TARGE170) oraz belkowych (BEAM4). Zamodelowany fragment osi zestawu kołowego uwzględniał szczegółowo odwzorowaną geometrię czopa współpracującego z piastą koła jezdnego oraz najbardziej wytężony obszar osi w karbie tuż za czopem współpracującym z kołem jezdnym. Siatkę elementów skończonych przedstawiono na rys. 4. W celu uzyskania dokładniejszego rozwiązania silnie zagęszczona została siatka elementów skończonych w obszarze, w którym występuje największe wytężenie. Ze względu na nieregularny rozkład nacisków kontaktowych pomiędzy piastą koła jezdnego a czopem osi, również w obszarze kontaktu odpowiednio zagęszczono siatkę. W pozostałym obszarze zastosowano siatkę nieregularną z elementami skończonymi o większych wymiarach. Model został uzupełniony o uproszczony model bryłowy koła jezdnego. W celu skrócenia czasu obliczeń numerycznych pozostałe fragmenty osi zamodelowano za pomocą elementów belkowych (BEAM4).

Decydujący wpływ na wytężenie w karbie osi mają efekty giętne. W modelu numerycznym, którego rozwiązania przedstawiono na rys. 5, nie uwzględniono wpływu koła jezdnego, a więc również nacisków między kołem a czopem osi. Dla rozwiązania konstrukcyjnego A naprężenia nominalne od zginania wyniosły $\sigma_x = 87$ MPa. Podobne naprężenie uzyskano w modelu numerycznym w pewnej odległości od karbu geometrycznego. Maksymalne naprężenie od zginania w karbie wyniosło natomiast $\sigma_{x max} = 107$ MPa (rys. 5b). Numerycznie wyznaczony współczynnik koncentracji naprężeń dla rozwiązania konstrukcyjnego A wyniósł więc $K_{\text{MES}} = 1,23$ (mniej niż podaje norma [2]).

Rys. 4. Siatka elementów skończonych dla modelu fragmentu osi zestawu kolejowego Fig. 4. Numerical FEM model of part of investigated axle of wheelset

Rys. 5. Wytężenie H-M-H w karbie osi (a) oraz naprężenia σ_x wywołane zginaniem osi (b), wariant A Fig. 5. Equivalent von Mises stress (a) and bending stress σ_x (b) caused by bending of axle, version A

Obliczenia wykonano również z uwzględnieniem nacisków kontaktowych pochodzących od połączenia odkształceniowego koła jezdnego z czopem osi zestawu kołowego oraz z uwzględnieniem zginania (rys. 6). Podobnie jak w modelu 2D, w obliczeniach tych przyjęto maksymalny i stały po obwodzie czopa wcisk względny $w_{wzgl} = 0,136\%$. Ze względu na występujące deformacje otrzymano nieregularne rozkłady nacisków kontaktowych zarówno po obwodzie (rys. 7a), jak i po długości połączenia odkształceniowego (rys. 7b). Na granicy obszaru kontaktu można zaobserwować duży gradient nacisków. Jednakże uzyskane wartości na granicy kontaktu związane są z karbem geometrycznym, jakim jest koniec obszaru kontaktu. Dodatkowo silnie zależą one od gęstości siatki elementów skończonych. Z tego powodu za maksymalne naprężenia kontaktowe można uznać te, które występują w okolicach centralnej części połączenia odkształceniowego, czyli dla $x/L \in (0,4; 0,7)$.

Rys. 6. Warstwice naprężeń kontaktowych w połączeniu odkształceniowym koła jezdnego z czopem osi: a) rozwiązanie dla wariantu A, b) rozwiązanie dla wariantu B

Fig. 6. Distribution of contact pressure in fit connection of wheel with axle: a) solution for version A, b) solution for version B

Rys. 7. Rozkłady naprężeń kontaktowych po obwodzie czopa (a) oraz wzdłuż czopa (b), wariant B Fig. 7. Distribution of contact pressure: a) along circumference of journal, b) along its axis, version B

Maksymalne wytężenie osi wystąpiło w karbie tuż za połączeniem odkształceniowym koła jezdnego i czopa osi (rys. 8). W analizowanym przykładzie oraz dla wcisku względnego $w_{wzgl} = 0,136\%$ jego ekstremalna wartość w rozwiązaniu konstrukcyjnym B wyniosła $\sigma_{HMH} = 158$ MPa. Decydujący wpływ na wartość tego wytężenia miały naprężenia normalne wywołane zginaniem osi. Jednakże pominięcie wpływu nacisków kontaktowych wywołanych połączeniem odkształceniowym prowadzi do zaniżenia poziomu wytężenia maksymalnego w analizowanym karbie (w wariancie A dla modelu z wciskiem $\sigma_{HMH} = 134$ MPa, natomiast dla modelu bez połączenia odkształceniowego $\sigma_{HMH} = 106$ MPa). Zjawisko to można również zaobserwować, porównując rozwiązania dla wcisku $w_{wzgl} = 0,136\%$ (rys. 8) oraz dla wcisku $w \approx 0$ (rys. 9). Należy również zauważyć, że znacząco zmieniają się zarówno warstwice wytężenia w obszarze kontaktu, jak i ich wartości maksymalne.

- Rys. 8. Wytężenie H-M-H w rozpatrywanym fragmencie osi zestawu kołowego, wcisk względny $w_{wzgl} = 0,136\%$: a) rozwiązanie dla wariantu A, b) rozwiązanie dla wariantu B
- Fig. 8. Distribution of equivalent von Mises stress in investigated axle, relative fit $w_{wzgl} = 0.136\%$: a) solution for version A, b) for version B

- Rys. 9. Wytężenie H-M-H w rozpatrywanym fragmencie osi zestawu kołowego przy wcisku $w \approx 0$, rozwiązanie dla wariantu B
- Fig. 9. Distribution of equivalent von Mises stress in investigated axle for fit $w \approx 0$, version B

Przedstawione rozkłady naprężeń $\sigma_{\rm HMH}$ (rys. 8) dotyczą przypadku z maksymalnym wciskiem na całej powierzchni połączenia. Jest to najbardziej niekorzystny przypadek, w którym wytężenie osiąga swoją maksymalną wartość. Zmniejszenie wcisku do minimalnej wartości $w_{\rm wzgl} = 0,102\%$ skutkuje niewielkim zmniejszeniem wytężenia w karbie (o ok. 5%), tab. 4.

Tabela 4

Wcisk	$\sigma_{ m HMH}$	Wariant	
względny [%]	Strona rozciągana $\theta = 0^{\circ}$	Strona ściskana $\theta = 180^{\circ}$	konstrukcyjny
0,136	157,8	137,6	В
0,102	150,4	138,8	В
0,00026	126,1	157,1	В
0,136	134,0	128,3	А

Wpływ wcisku na wytężenie σ_{HMH} w karbie osi

Należy zauważyć, że wraz ze zmniejszaniem wcisku odciążana jest strefa karbu, w której występują naprężenia rozciągające od zginania ($\theta = 0$). Zbyt duże zmniejszenie wcisku prowadzi jednak do powstania lokalnych koncentracji naprężeń w strefie, która podlega ściskaniu ($\theta = 180^{\circ}$), oraz do wzrostu wytężenia w strefie, która podlega ściskaniu na skutek efektów giętnych. Zjawisko to związane jest z kształtem deformacji połączenia spowodowanej momentami zginającymi.

5. PODSUMOWANIE

W celu szczegółowej analizy zjawisk występujących w badanym połączeniu odkształceniowym oraz ich wpływu na wytężenie w karbach osi niezbędna jest analiza z uwzględnieniem modelu trójwymiarowego. W analizowanym przykładzie na skutek deformacji giętnej naprężenia kontaktowe w obszarze współpracy koła jezdnego z czopem osi zmieniały się w zakresie od 60 MPa do prawie 120 MPa dla wcisku względnego $w_{wzgl} = 0,136\%$. Zaobserwowano również wyraźny wpływ wcisku na poziom wytężenia w karbie tuż za połączeniem odkształceniowym. Zaobserwowano, że zwiększenie proporcji średnic d_5/d_6 skutkuje zmniejszeniem naprężeń σ_{HMH} w najbardziej wytężonym karbie osi. Jednakże należy zauważyć, że decydujący wpływ na poziom wytężenia mają efekty giętne. Podsumowując, zwiększenie średnicy osi za karbem (wariant A - $d_5/d_6 = 1,083$), pomimo niekorzystnego wpływu połączenia wciskowego na dystrybucję naprężeń w karbie, pozwoliło na zmniejszenie maksymalnego wytężenia z wartości $\sigma_{HMH} = 158$ MPa do poziomu $\sigma_{HMH} = 134$ MPa dla wariantu B. Należy również zauważyć, że w przypadku A wytężenie po obu stronach osi (strefy rozciągana i ściskana) jest bardziej równomierne niż dla wariantu B.

Na koniec należy zauważyć, że otrzymane dla analizowanego przykładu wartości naprężeń po pomnożeniu przez współczynnik bezpieczeństwa *S* przekraczają wartości naprężeń dopuszczalnych podane w tabeli 1. Oznacza to konieczność zastosowania materiału o lepszych parametrach wytrzymałościowych, jak w [7], albo obniżenie obciążeń działających na oś.

Bibliografia

- 1. DECYZJA KOMISJI (KE) z dnia 28 lipca 2006 r., dotycząca technicznej specyfikacji dla interoperacyjności (TSI) odnoszącej się do podsystemu "tabor kolejowy wagony towarowe" transeuropejskiego systemu kolei konwencjonalnych C(2006)3345, 2006/861/WE.
- 2. EN 13104:2009+A1. Railway applications Wheelsets and bogies Powered axles Design method.
- 3. Sanecki H.: Badania wytrzymałościowe pojazdu pasażerskiego spalinowego zespołu trakcyjnego 220M. Zestaw wymagań dotyczących badań wytrzymałościowych wózków, maj 2010, s. 22.
- 4. Łaczek S.: Modelowanie i analiza konstrukcji w systemie MES ANSYS v. 11. Wydawnictwo Politechniki Krakowskiej, Kraków 2011.
- 5. Krukowski A., Tutaj J.: Połączenia odkształceniowe. PWN, Warszawa 1987.
- 6. Ryś J., Romanowicz P.: Analiza nośności walcowego połączenia wciskowego koła zębatego o zębach skośnych. Czasopismo Techniczne, 1-M/2010, Wydawnictwo Politechniki Krakowskiej, 2010, s. 131-141.
- 7. Mancini G., Corbizi A. et al: Design of railway axle in compliance with the European Norms: high strength alloyed steels compared to standard steels.