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TWO-LANE TRAFFIC FLOW MODEL FOR HIGHWAY NETWORKS 

Summary. A discrete model to simulate multi-way traffic flow is introduced. The well 

known cellular automata Nagel-Schreckenberg model is extended by adding extra road lanes. 

New set of state rules is developed to provide lane change manoeuvre for vehicle overtaking 

and returning to lane designated for slower traffic. Results of numeric simulations are 

partially consistent with the so-called fundamental diagram (flow vs. density), as is observed 

in the real free-way traffic. 

DWUPASMOWY MODEL RUCHU DROGOWEGO DLA SIECI 

AUTOSTRAD  

Streszczenie. W Artykule przedstawiono dyskretny model ruchu drogowego. Znamy 

model Nagela-Schreckenberga oparty na automatach komórkowych, został rozszerzony 

o dodatkowe pasma ruchu. Opracowano nowy zestaw reguł zmiany stanów, umożliwiający 

manewr zmiany pasa ruchu: wyprzedzania oraz powrotu na pas przeznaczony do jazdy 

z mniejszą prędkością. Wyniki numerycznych symulacji są częściowo zgodne 

z podstawowym diagramem fundamentalnym (przepływ vs. gęstość), zależnością 

obserwowaną w ruchu rzeczywistym.  

1.  MOTIVATION – TRAFFIC FLOW QUALITY 

Modelling traffic transport problem is very interesting and important for its dynamics and 

serious dramatic consequences in real life. The main goal of traffic flow control and road 

network design is to provide a qualitative description of traffic flow, especially to answer the 

question whether the traffic flow is equal to demand flow level over network in time and 

space [3]. The models, we examined, can be useful to provide proper tools to perform 
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simulations for various scenario i.e. closed lane segment, lane speed limit, accidents, start-

stop condition. 

2. TRAFFIC FLOW PARAMETERS 

In our research we focus on the main flow-density relationship which is the most important 

to reflect the traffic dynamics. This dependency is known as a Fundamental Diagram and is 

postulated as a certain function used for the approximation of observational data (see Fig. 1). 

 

 
Fig. 1. Fundamental diagram. Real-life observation 

Rys. 1. Zależność fundamentalna. Obserwacje rzeczywiste 
 

Having the basic relationships between  traffic flow, speed and density, special attention 

can now be directed toward the scale of view of traffic flow: macroscopic or microscopic.  

3. CLASSICAL APPROACH 

In the classical approach the  traffic is mainly modelled as aggregated vehicle counts or 

traffic streams. The macroscopic treatment views the traffic as a fluid moving along a duct 

which is the road lane. The microscopic treatment considers the movement of individual 

vehicles as they interact with each other. In both approaches partial differential equations or 

delay differential equations are used. 

Macroscopic approach 

The macroscopic treatment views the traffic as a continuum similar to a fluid along a duct 

which is a highway. The discussed traffic along a reasonably crowded road has no appreciable 

gaps between individual vehicles. In such cases traffic may be viewed as continuum, and its 

characteristic corresponds to the physical characteristic of the imaging fluid. Macroscopic 

traffic flow models do not distinct vehicle-driver individual behaviour. This is the main issue  

we are concerned with, however, it is   not  observed during simulations [1]. 
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Microscopic approach 

Microscopic traffic flow models aim to describe the behaviour of individual vehicle-driver 

unit with respect to other vehicles in the traffic stream. Microscopic models are very suitable 

for the description of multiple user-class flow. However, the more realistic microscopic flow 

models are very complex. What is more, it has been argued that the assumptions underlying 

the equations describing the motion of each individual car are too difficult for validation, 

since the  human behaviour in the real-life traffic is difficult to observe and to measure. This 

is unfortunate, since for reliable simulations, the microscopic parameters have to be just right. 

Consequently, many researchers and traffic flow management software use macroscopic 

traffic flow models instead [3].  

Car following model 

In car-following model (CFM) we postulate that an individual car’s motion only depends 

on the car ahead [4]. Analysing driver behaviour, one can discover that human being has 

a time lag in reacting to any input stimulus. The human’s decision of using break pedal has 

some delay [1]. This observation  was  a basis for the  construction of  theories, between them    

the simplest linear CFM equation that belongs to  the  class of second order, neutral type 

difference-differential equations, namely NDDEs [5]. 

4. DISCRETE MODELS 

In the discrete models, the continuous quantities such as the position and the velocities of 

a car are approximated by (discontinuous) integer numbers. In our opinion, however, 

considered models have the ability to show phenomena observed both at macroscopic and 

microscopic levels. 

We focus on the cellular automata approach (CA) instead of on the classical ones, i.e. 

fluid-dynamics approach [1],  because of one important property of cellular automata, namely 

the lack of stability, i.e. very small changes in transition rules or states can have very dramatic 

consequences [6]. The biggest advantage of CA is that each cell of the automaton can reflect 

individual object characteristics. Since  cellular automata are used widely in various 

disciplines, many definitions exist. We quote one of them [8]. 

 

Def. 1 Cellular automata are dynamical systems in which space and time are discrete. 

A cellular automaton consists of a regular grid of cells, each of which can be in a finite 

number of k possible states, updated synchronously in discrete time steps according to local, 

identical interaction rules. The state of a cell is determined by the previous states of 

surrounding neighbourhood of the cell. 

Basic Nagel-Schreckenberg model 

Nagel-Schreckenberg model  known as the NaSch cellular automata model was originally 

defined by Nagel and Schreckenberg [11] in 1992. The model describes only one lane traffic 

with periodic boundary conditions. This means that the total number of vehicles is constant. 

The cell is empty or occupied by a vehicle. All  cells are updated simultaneously. We use the 
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notation as follow: ix  denotes position of the vehicle, iv  is speed of the vehicle and ig  is 

a gap between leader and follower, and is defined as 11   iii xxg .  

Then the set of  rules is defined: 

– acceleration of free vehicles: 11 1max   iiiii vvvgvv , 

– slowing down due to other vehicles: iiii gvgv  1 , 

– random breaking (noise): 10 1   iii vvv with probability p , 

– vehicle motion: iii vxx 1 . 

The cell neighbourhood and the gap for NaSch simple rule are presented on the Fig. 2.  

 

Fig. 2. Neighbourhood and gap of NaSch model 

Rys. 2. Sąsiedztwo, oraz wolna strefa w modelu Nagela-Schreckeberga 
 

Basic NaSch model assumes constant p  for the third rule. It is insufficient for modelling 

some traffic flow phenomena i.e. start-stop state.  Researchers who extend “random breaking” 

rules and proposed a velocity-depended randomisation (VDR) approach. It is a simple idea, 

namely the probability p  is a function of the vehicle speed    tvpp  . In the simplest case 

the probability function is defined as follow: 
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The first basic limitation of the NaSch model is that all drivers behave in the same manner. 

One  of possible solutions of taking into  taking  this into account could be  by assigning  to 

different vehicles different maximum speeds. Moreover, the tolerated gap between vehicle 

could be  driver dependent or could be  a function of the speed. 

The second weakness of the model is the deceleration rule  (namely breaking) since in the 

present form it obeys a process under non-physical conditions: in some states vehicles reduce 

speed from maxv to 0 in one iteration. 

5. MULTILANE DISCRETE TRAFFIC FLOW MODEL 

Presented in this section approach is based on CA. First we define rectangular periodic 

lattice. Let  denote a  periodic net, where each node contains single cell c . 

   mjniNjiji  0,0,,|,  (4)   

Vehicles move on a two dimensional discrete space of the  j -th  cell located on the i -th 

lane. Every cell can either be empty or be  occupied by one vehicle with the velocity 

 max,...,1,0 VV . Time evolves in the synchronous manner, at each discrete time step the 

arrangement of N cars is updated in parallel, according to a set of rules. In the multilane case, 
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we simply take a single lane and place each one alongside the other. We consider a two-lane 

model with periodic boundary conditions, where additional rules defining the exchange of 

vehicles between the lanes are introduced. It is clear  that this extension can be made without 

changing the basic properties of the single-lane model. 

For our model, we adapt the NaSch set of rules to provide vehicles’ movement. We 

intentionally, have not included ”random breaking” rule. Such model is known as the 

deterministic NaSch traffic flow model [7]. Since we are now using a deterministic, reversible 

and finite CA model with periodic boundaries, the corresponding traffic system is periodic in 

its system states. 
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5.1. Extension of the set of rules 

After many numerical experiments, we  have simplified our model and introduced no-

accident condition. It means the set of rules have to preserve against situations, where more 

than one car could occupy the same cell. We realise this approach and it helps us to define 

some generic rules; further research is under development. 

Overtaking manoeuvre uses an extended neighbourhood and covers sites behind and ahead 

the vehicle, on the both lanes. We assume that the driver only detects the space occupancy of 

his neighbourhood. The speed of the other vehicle on the highway remains unknown for him. 

In consequence, some other strong assumptions have to be made to assert no-accident 

condition. We require the empty neighbourhood behind the car to ensure that only one car 

overtakes the considered cell. The need of the empty neighbourhood behind the car on the left 

lane protects against collisions with the vehicles that drive along the adjoining lane. All 

required conditions are below: 
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where: 

– jiD , max  is distance cover by a vehicle at maximum speed (per one iteration), 

– t
jiD ,  is distance cover by a vehicle at spot speed, 

– 1
)1(,1




t
DjL  is the value of cell at the relative position 1Dj , at the next time step. 

 

Fig. 3. Extended neighbourhood for overtake manoeuvre 

Rys. 3. Rozszerzone sąsiedztwo dla manewru wyprzedzania 

 

Returning manoeuvre satisfies requirement that left lane should be mainly used for the 

overtaking purpose. The rule is similar to that one used in the overtaking manoeuvre in [12]. 
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For multilane model, extended notation is introduced. The lower indices i  and j denote 

lane and vehicle (or empty cell) respectively. The upper index t  defines the point in the 

discrete time domain. The upper symbol   or   denotes direction to the closest neighbouring 

vehicle. Thus, t
jiD ,

,
  is distance to the nearest leader at the i -th lane, at relative position j , and 

t
jiD ,

,
  is distance to the nearest follower. To reflect drivers various maximal (or preferable) 

speed we introduce constant jiV , max  for each of them. 

5.2. Corrected lane-change rules 

However, in our previous work [15] we have shown, that the introduced overtake 

manoeuvre should be preserved and the  lane changing occurs sporadically even at a low 

density. Such rules are useless ‒ our multi lane model behaves like multi independent lanes. 

In consequence, we have developed another approach, where rules are less preserved and still 

satisfy no-accident condition. Now, the new overtake manoeuvre for car on the right lane, at 

position jL ,0  , is defined with the condition: 
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where: 

– t
jG ,

,0


 is the gap to the nearest follower at the right lane, at the relative position j , 

– t
jG ,

,1


 is the gap to the nearest leader at the left lane, at the relative position j , 

– 1

)1(,1 ,0





t

Vj t
j

L  is the value of cell at the relative position  1,0  t
jVj . 

 

Fig. 4. Neighbourhood for overtake manoeuvre 

Rys. 4. Zdefiniowane sąsiedztwo dla manewru wyprzedzania 
 

We have used  here other notation, which is more common in used. The distance Dand the 

gap G , are equivalent. Such a rule works on smaller neighbourhoods (see Fig. 4. 

10max V , 5,0 jV ), and  in consequence a smaller set of empty cells is required to process 

any lane change manoeuvre. Lane back makeover is symmetrical to overtake manoeuvre. 

The defined lane change rule’s neighbourhood has important drawback, it is possible that  

more than one vehicle will translate to the same cell (same position), In such case, in the 

implementation of the algorithm  a list of vehicles that  share the same  cell  is produced and 

then  one car is selected (randomly)  to occupy that cell. Then the NaSch rule set is applied to 

remaining vehicles. Fortunately, in our simulations the random choice  in deterministic rules 

scheme occurs rarely and its effect can be neglected. 
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The new exchanged rules are defined by the following two criteria: first, a vehicle needs an 

incentive to change a lane; second, a lane change is only possible if some safety constraints 

are fulfilled. Rules are processed in the following priority order: 

 returning manoeuvreovertaking manoeuvremoving (NaSch rules’ set) 

However, only one single rule is applied per intermediate iteration. Main iteration I consists 

of three independent sub-iterations. Each sub-iteration processes  one rule in a priority order. 

In the most situations vehicles just keep moving on the same lane. The rules are formulated 

under the following conditions: 

– returning manoeuvre for each vehicle on lanes except  for the first lane, 

– overtake manoeuvre for each vehicle on the lanes except for the  last left handed  lane. 

The rule is applied if a car has no possibilities to develop its maximal preferable speed: 

1,0,0max,0  
jjj VGVV , 

– moving manoeuvre for each vehicle, on every lane, except for cars that have changed lane 

recently. 

The above set of rules is minimal in the sense that they  lead to a realistic behaviour and to the 

so-called fundamental diagram, i.e. the relation between the flow and the density is 

reproduced correctly. Unfortunately, some phenomena like spontaneous jamming will not 

occur in such system. One of  solutions to perform could  be  that one in which  more realistic 

simulation appears; the use of deterministic cellular automata model with  stochastic 

boundary conditions [14] or with the open boundary conditions. 

6. SIMULATIONS 

We have assumed that  the mean acceleration of passenger cars from 0 to 100 km/h is 12 

second. The vehicle length is an approximation of passenger car size and  equal to  4,5 meters. 

The further calculations are trivial, their main  parameters are in Tab. 1. For automata size of 

][1000 cellsL   the road length is 4,26 km. The 1000 iterations lasts about  half an hour time 

period. The time step, one single iteration,  ensures a sufficient time to perform the lane 

change manoeuvre. 

                                                                                            Table 1 

Model discretisation parameters 

Parameters Cellular Automata Real environment 

Car length 1 [cell] 4,5 [m] 

Lane length 1000 [cell] 4,5 [km] 

Car speed (0,20) [cell/iter] [8,215, 164,3] [km/h] 

Car acceleration - 2,315[m/s
2
] 

Time laps 1 [iter] 1,972  [s] 
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Beginning conditions 

Beginning (Initiation)  random condition was  used in all processed simulations. The maxV  

(preferable speed) of each vehicle was constant and drawn from the  uniform or arbitrary 

speed distribution. The one-modal speed distribution is the most common among drivers of 

passenger cars. The arbitrary bimodal distribution was used to reflect situation on the 

highway, where two sorts of vehicles dominate: passenger cars and trucks. The initial  speed 

of car jiV ,  is drawn from range max,0 V . Finally, all vehicles are located randomly on both 

lanes. Density distribution over highway in time 0t is quasi uniform. 

 

Sensitivity analysis  

Numbers of numerical experiment have been performed to analyse the sensitivity of the 

model to  the cellular automata length and to the number of iterations. The plots (Fig. 5.) 

show that the parameter flow converges  very fast and, moreover, the  chosen length L=1000 

[cell] and the time I=1000 [iteration] are  quite enough to obtain a stable solution. 

 

Fig. 5. Sensitivity analysis. Length of the automata, number of iterations 

Rys. 5. Analiza czułości. Długość automatu, liczba iteracji 

 

Please note that on all plots the approximation curves  are only for visualization purpose. 

Default natural cubic spline approach has been used. 

 

Results 

As we have  mentioned previously, the results are obtained from simulations on the  lattice 

of 2 * 1000 sites with random initial configurations of vehicles. The population of N cars 

were randomly distributed in on both lanes around the  complete loop with initial speeds 

sampled from max,0 V .The sensitivity analysis was done. The size of automata and number of 

iterations equal to  1000 is sufficient for the system to reach a stationary states. At this point 

of our research, we investigate some relations between preferred speed distribution and 

extreme points  on the fundamental diagram (Fig.6.). At the higher density, the flow is 

stabilized and does not depend on driver comfortable speed preferences. The interesting 
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phenomenon is a very similar density-flow dependency for the constant preferable speed 

1max V and that drawn from the uniform distribution of 10,1 .  

The explanation is: the ”idler drivers” slows down the traffic flow and the occurrence of 

overtake manoeuvre is still insufficient for other cars to develop a higher speed. We 

discovered, in bimodal arbitrary preferable speed distribution, that the fundamental diagram 

has some suspicious features. The flow at  the low density is unpredictable. This effect is to 

investigate in further researches. 

 

Fig. 6. Fundamental diagram. Uniform preferable speed distribution, one and bimodal speed distribution 

Rys. 6. Diagram fundamentalny. Rozkład maksymalnej preferowanej prędkości: jednostajny, jedno      

i dwumodalny 
 

We also investigated some aspect of the overtake manoeuvre occurrence. The relation 

between the overtakes manoeuvre versus the density and a preferable  maximal speed 

distribution is highly non-linear. The number of lane change events varies spontaneously. Our  

hypothesis is that  under some conditions a complex two-lane traffic flow model behaves like 

the Wolfram class 4 automata. What is more, the neglected influence of random process in the 

lane change rule may be false. These observations should be verified in further researches. 

8. CONCLUSION 

The proposed model is based on the Nagel-Schreckenberg cellular automata model without 

VDR. The solution of the highway traffic dynamics  partially agrees with the real-life traffic. 

The lack of some stochastic noise influences the model behaviour. Some class of phenomena 

– spontaneous, unstable state, i.e. jam creation, kinematics waves, will not be reproduced in 

the strictly deterministic CA model. On the other hand, the new promising lane change 

manoeuvre set of rules were introduced. Presented algorithm fulfils no-accidents requirement 

and makes driver behaviour less preservative in comparison to the algorithms  proposed in our 

previous works. We have begun to verify how the lane back and overtake manoeuvres 

influence the fundamental diagram, Unfortunately, for higher density we have observed, there 

are no car exchanging between lanes. Cars are moving along the same lane. Two-lanes traffic 

flow model behaves rather like two independent one-lane model. In the near future, we are 
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going to pay more attention to the set of rules that govern  lane changing manoeuvres and to  

focus on unstable behaviour of the system at the low density. 
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