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OPTIMISATION OF THE MACHINING PROCESS USING GENETIC 

ALGORITHM 
 

Summary. This paper deals with genetic algorithms as an optimisation method 

and its use for optimisation of the machining process in the CAM system. Tool 

path verification and optimisation are two best ways of dramatically improving 

manufacturing operations while saving money with relatively little work. Genetic 

algorithms can be used for improvement of these operations and considerably 

reduce length of tool paths leading to the reduction of machine times and 

optimisation of cutting parameters. Provides the software application created to 

optimise processes of boring and local milling (Incomplete sentence; what or who 

provides). 
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1. INTRODUCTION 

 

Preparatory activities of the pre-production stage and their importance in terms of affecting 

the quality and price of produced parts constitute a huge space for the application of 

the philosophy of optimisation. The problems associated with optimisation of technological 
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processes are increasingly relevant given the opportunities of accessible solutions and use of 

computer technology [4,11]. Automated plants with deployed CNC technology utilise PC at 

the design stage, with subsequent transition to technology, using the CAD/CAM software. 

When solving optimisation tasks related to technological processes, it is necessary to optimise 

not only operations but also the used technological devices defined within the technological 

process operation segments to ensure maximum labour productivity and minimum costs or 

maximum profit. The modern concept of CAD/CAM systems enables optimising the process 

by a number of criteria. Optimisation can be based, for example, on a semi-finished product. 

The semi-finished product in a CAD/CAM system is gradually updated (modified) during the 

design and simulation of the machining process [10]. Each following operation includes 

machining of the remaining material only. This means elimination of unnecessary and 

inefficient movements and actions [12]. Computer-aided optimisation of machining processes 

(CAM – computer-aided manufacturing) utilises software applications where the method of 

performance is usually carried out using additional modules (optimisation programs). 

Optimisation programs enable maximisation, in the machining process, especially tool paths, 

cutting parameters, NC programs, etc., [13]. However, the tool path generated from 

CAD/CAM systems is not guaranteed as the optimal tool path and there are possibilities that 

the tool path distance is longer in order to complete each drilling process. Therefore, 

optimisation of the CNC machine tool path should be done before starting a machining 

process to ensure the tool path taken will produce the shortest path of cutting tool travel [1].  

Optimisation of machining processes plays a key role in meeting the demands for high 

precision and productivity. The primary challenge for machining process optimisation often 

stems from the fact that the procedure is typically highly constrained and highly non-linear, 

involving mixed-integer-discrete-continuous design variables. Additionally, machining 

process models are likely discontinuous, non-explicit, or not analytically differentiable with 

the design variables. Traditional non-linear optimisation techniques are mostly gradient-

based, which poses many limitations on their application to today’s complex machining 

models. Mathematic analysis disposes of a large variety of mathematic models for solving a 

large variety of optimising problems. Nevertheless, many real-world tasks cannot be solved 

by these techniques, or their solutions, which are not as good as those of some other special 

nonlinear optimisation techniques. Therefore, some special optimisation techniques were 

designed as solutions close to the optimal one but search only in a very little fragment of the 

solution space. One of such optimisation technique is the Evolution Programming (EP). EP is 

the name of a large variety of optimisation techniques based on evolution principles. Genetic 

algorithms (GA) is one of these evolution techniques, which mostly imitate principles of a 

natural evolution process. GA presents itself as a very strong optimisation technique capable 

of solving very complicated task with large search space in a very short time with very good 

results. There is a lot of application, wherein any optimisation technique was used or another 

whose results can be improved. The field of application of genetic algorithms towards solving 

optimisation problems in engineering is almost unlimited. [2]. Prediction solutions 

optimisation problem depends on the correctness of the proposed action solution to a specific 

optimisation task. This involves determining the optimisation criteria and restrictive 

conditions, relating to the case and knowledge of the issue of genetic algorithms, which 

outwardly look like a universal solution, but requires an individual approach to each case.In 

conjunction with the Genetic Algorithm (GA) method, Kumar and Pacahauri [5] and Nabeel 

et al. [9] also used the Travelling Salesman Problems (TSP) to reduce the total time and 

distance of tool travel for drilling sequence. Finally, genetic algorithm is presented in this 

paper as an optimisation method with its use for the maximisation of the machining process in 
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the CAD/CAM system. It is a software application with the possibilities of crossing methods 

especially with TSP, created to optimise the processes of boring and local milling. 

 

 

2.  GENETIC ALGORITHM (GA) IN BRIEF 

 

Concisely stated, a genetic algorithm (GA) is a programming technique that mimics 

biological evolution as a problem-solving strategy. The evolutionary program is a 

probabilistic algorithm which manages the population of "n" individuals (chromosome) for "t" 

iterations. Each individual represents a potential solution to the problem and within the 

evolutionary program, it is presented as a data structure. Each solution is evaluated, and the 

result of the evaluation is a degree of suitability (fitness). The new population is then created 

selecting the most suitable individuals. Some of the individuals undergo the transformation 

using genetic operators and generate new solutions. There are single-transformations of 

mutation type (Fig. 1a) which will create a new individual through a small change in the 

structure itself and transformations of higher-order of crossover type (Fig. 1b), which will 

create a new individual combining parts of two or more individuals. After a certain number of 

generations, the program converges supposing that the best individual represents a nearly 

optimal solution [7]. 

 

 

 
Fig. 1. Scheme of mutation (a), and single point crossover (b) [6] 

 

For a specific task, several evolutionary programs can be proposed. These can differ in 

many ways. Different ways of the individual´s inscriptions can be used, genetic operators of 

individuals´ transformation can also differ similarly as methods of creating the initial 

population or management methods of restrictive conditions and parameters (population size, 

the probability of using genetic operators, etc.). However, all of them share basic principles, 

for example, the population of individuals undergoing some transformations (changes) and 

the individual struggle for survival during the process of evolution. 

The best-known techniques among evolutionary algorithms are the climbing technique also 

known as local or neighbouring search, the simulated annealing technique and genetic 

algorithms that truly mimic evolutionary principles in nature. Before a genetic algorithm can 

be put to work on any problem, a method is needed to encode potential solutions to that 

problem in a form that a computer can process. These are the most common methods for 

solution encoding: binary string (0’s and 1‘s), string of values (integer, real, letter...), string 

encoded as permutation (every value can appear in the string only once), branching data 

structures (trees), and matrix encoding. It must be taken into consideration that solution 

strings of evolutionary algorithms need not have a fixed length. Then, a selective mechanism 

would be applied to decide which individuals will be fit for selection for reproduction and 

which, on the other hand, will be discarded as unfit. There are many different techniques 

which can be used when creating a genetic algorithm for selecting the individuals to be 

transferred to the next generation; Elitist selection, Fitness-proportionate selection, Roulette-

wheel selection, Scaling selection, Tournament selection, Rank selection, Generational 
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selection, Steady-state selection, and Hierarchical selection. Some of these methods are used 

individually, while others can be and are often used in combination. 

Population size is a very important factor that influences the function of genetic 

algorithms. If the population is too small, the genetic algorithm can converge very quickly. 

However, if is too large, the genetic algorithm may require too much computational time, 

which makes it inefficient. In addition, the population diversity and selection pressure are 

influenced by the population size. An algorithm with varying population size does not use any 

of the earlier mentioned or similar selective mechanisms, rather it evaluates individuals by 

age. 

Age of the individual is equivalent to the number of generations during which the 

individual will be in the population managed by the algorithm. The individual´s age is 

proportional to its fitness and replaces thereby selective mechanisms. However, it also 

directly influences the population size in every step of the evolutionary process. This method 

describes the real natural selection in the most convincing manner. Lifetime (or age) is 

assigned to each individual at its origin and remains constant during the evolutionary process 

until its extinction. This means that the individual´s age is no longer recalculated. There are 

many ways of assigning age to individuals. It is obvious that the assignment of a constant 

value (greater than 1) would result in the population exponential increase. Equally, as there is 

no selection pressure on individuals, the assigning of constant age would result in a low-

efficiency algorithm. Several strategies for the calculation of the age of individuals have been 

proposed and tested experimentally, for example [8]: 

Proportional allocation: 

 

         (1) 

Linear allocation: 

 

       (2) 

Bi-linear allocation: 

 

    (3) 

 

  (4) 

 

Fitness (i) - fitness of the individual 

AvgFit - average fitness in the current population 

MinFit - minimal fitness in the current population 

MaxFit - maximal fitness in the current population  

MinLT - minimal lifetime value 

MaxLT - maximal lifetime value 

LT - lifetime value 

 

        (5) 
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Proportional evaluation - This originated from the idea of roulette selection; the age of the 

individual is proportional to its fitness. However, this evaluation has one great shortcoming; 

individuals, whose fitness greatly exceeds the average fitness, can be evaluated by very old 

age. Linear evaluation - the life of individuals is recalculated to the best suitability in the 

population. If, however, many individuals have the same rate of fitness, or near the maximum, 

this leads to a high evaluation and rapid expansion of the population. Bi-linear evaluation is a 

compromise between the previous two. It highlights the differences between the life 

expectancy of the best individualswhile taking into account the maximum and minimum 

length of life [8]. 

When selecting suitable individuals, they must be randomly modified in the hope that the 

fitness of the next generation will increase. Two methods are used for searching the problem 

space, namely: exploitation - when creating a new generation, it makes use of the 

"experiences" of previous generations to determine areas promising success in searching 

optimal solutions; but it carries the risk of being trapped in a local extreme; exploration - 

when creating a new generation it ignores the "experiences" of previous generations. The 

browsing process is conducted in unexplored areas thus avoiding deadlocks in a local 

extreme, which eventually slows down the process. During the browsing itself, the main 

function of the algorithm is to find the global extreme of hypersurface and not get stuck in 

any of the local extremes during the searching process. Local extremes usually work in 

parallel with several individuals making up the population. This is a discrete time process – 

individual generations gradually take turns. The process is repeated until the terminating 

condition is fulfilled. It may be the maximum number of generations or other acceptable limit. 

The fundamental principle of the genetic algorithm activity is shown in the flowchart (Fig. 2):  

 

Initialization

Evaluation

Do While not done

Selection

Generating childs

Evaluation

Compensation

 initializes the initial generation usually 

consisting of randomly generated individuals,

 calculation of fitness for each individual,

 finishing condition,

 performs a natural selection of the population, 

as appropriate, to be the reproduction,

 create new child based on the genetic 

operators (crossover, mutation),

 calculation of fitness for each child,

 increments the counter generations and 

implements a new generation.  
 

Fig. 2. Flowchart of genetic algorithm [7,14] 
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Genetic algorithms are highly effective means of optimisation and are applied mainly for 

the solution of problems with large or infinite number of solutions. Such a problem may be, 

for example, the determination of an optimal drilling path when the tool path passes through n 

points. Similar tasks can be found in many optimisation techniques called Travelling 

Salesman Problems (TSP) [7], a special type of problem, which evolutionary algorithms deal 

with. Definition of this task is very simple: the salesman has to visit each place within his 

trading area once and then return to the starting city. If he knows the cost of travelling among 

individual cities, how should he plan the tour for minimal costs? The search space is then the 

permutation of n cities; every permutation is then one possible solution and the optimal 

solution is the permutation with minimal travelling costs. Size of the search space is then n! 

TSP is a relatively old problem: Euler first described it in 1759 (under a different title). The 

name “Travelling salesman” was first used in 1932, in a German book: Travelling salesman, 

how and what to do in order to obtain commission and be successful in his trade [8]. The 

RAND Company presented TSP in 1948. The good reputation of this company helped the 

TSP become a famous and popular topic. In recent times, many algorithms have been 

designed for TSP solution using different methods and strategies. 

TSP problem can be applied for optimisation of some technological processes such as 

drilling and local milling operations. Most of the common CAM and CAD/CAM systems use 

none or only some type of linear mathematics for the solution of similar tasks due to long 

computing time [3]. Due to its efficiency, GA can solve the mentioned problems within few 

minutes with brilliant results. Thanks to their fundamental functions and characteristics as 

parallelism, schema theorem and crossing, it is possible to create various optimisation 

applications. 

 

 

3. GA APPLICATION IN OPTIMISATION OF MILLING AND DRILLING 

PROCESS IN CAD/CAM  

 

The Toolpath Optimiser application was designed for the best use of tool paths of drilling 

and local milling based on GA. During the design and creation of the genetic algorithm for 

the Toolpath Optimizer application, it was necessary to choose among many techniques and 

settings (for example, a problem inscription, method of crossover, selection and mutation, 

setting the probability of crossover and mutation, setting the size of population), by means of 

which the genetic algorithm could be assembled. Incorrect set up of a genetic algorithm could 

lead either to a too long optimisation process or to an unsatisfactory result of the optimisation 

process. The set-up genetic algorithm was implemented as an optimisation instrument for 

particular inputs and outputs (CL data from Creo Parametric 5.0) for created Toolpath 

Optimiser applications. The application was developed in the programming environment 

Borland Delphi, supplemented by the module for reading and writing of CL data, and finally 

experimentally validated on concrete examples of drilling and local milling. It also includes a 

function for the movement of the approaching point before drilling, which reduces 

inaccuracies of tool positioning caused by a backlash in the slides. Input and output data of 

the optimisation module are CL data of CAD/CAM system Creo Parametric 5.0. The 

experimental verification of the created optimisation software was applied to maximise the 

creation of the technological process of the parts shown in Fig. 3a, b. 

The problem of drilling optimisation can also be found in the electrotechnical industry in 

the production of circuit boards,  and many other areas. The reason this problem is often 

solved in the production of circuit boards is that the drilling process itself is very short. 
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Movement of the tool out of contact with the machined surface presents an essential part of 

the production time. The second reason is the number of holes, that is, to find the optimal path 

for more than 20 points (Fig. 3a) becomes an almost unrealistic task under conditions of 

common practice [13]. 

Local milling is an operation that is performed after a previous operation of volume milling 

with a larger diameter tool (Fig. 3b). In places where a larger diameter tool could not remove 

the material, a smaller-diameter tool is used; this operation is called local milling. High 

requirements demand precision, and in drilling, the moving towards the centre of holes under 

the same vector is often applied. This helps eliminate inaccuracies caused by changes in the 

slides movement or movement of a machine table from positive to negative and vice versa. 

The application controls the tool path so that the tool approaches the positions of all holes 

under the same vector.  

 

 
a) 

 
b) 

 

Fig. 3. Illustrations a) of printed circuit boards for holes manufacturing by drilling operation, 

b) of local milling operation 

 

 

A non-optimised tool path for the drilling process is generated with the system Creo then 

transformed into the CL data file and, subsequently, loaded into the Toolpath Optimiser 

application. Fig. 4a shows a tool path of the drilling process generated by the system Creo and 

Fig. 4b shows the non-optimised tool path loaded into the Toolpath Optimiser application. 

 

 
a) 

 
b) 

 

Fig. 4. a) non-optimized tool path of the drilling operation generated by the system Creo 

b) non-optimized tool path loaded in the application Toolpath Optimizer 
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Optimisation process in the application starts with the confirmation of the selection 

sequence. Its graphical flow is shown in two tabs (Fig. 5). One shows the best path in each 

step of the evolutionary process (Path length) and the other gives graphical information about 

the evolutionary process (GA process). GA process shows the dependence of the found 

shortest path on the number of generations (Length min). It also shows the dependence of the 

average path length of all individuals from a particular generation on the number of 

generations (Length avg) and the dependence of the found longest path in the generation on 

the number of generations (Length max). Path length graphically displays the original length 

of a toolpath generated from the CL data file (Length init) and a new optimised path length 

(Length new) generated by GA. When the evolutionary process is completed, it is possible to 

compare the length of the new and original path, to compare the optimised path (Fig. 5), to 

decide whether the result meets the requirements or to repeat the evolutionary process.  

 

 
 

Fig. 5. Graphical flow of the optimisation process at the drilling operation 

 

 

Having accepted the optimised path (Fig. 6a), the CL data file is edited. The optimised tool 

path can be loaded and displayed in Creo (Fig. 6b) and consequently processed by the post-

processor to NC code for a particular CNC machine. 

 

 
a) 

 
b) 

 

Fig. 6. a) optimised tool path generated by the application Toolpath Optimiser, b) optimised 

tool path of the drilling operation loaded in the system Creo 
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a) b) 

 

Fig. 7. Tool path of a local milling operation. 

a) non-optimised tool path generated by system Creo, 

b) optimised tool path loaded in the application Toolpath Optimiser 

 

 

From the point of view of tool rapid traverses, the local milling process is similar to the 

process of drilling. Both processes use the same genetic algorithm, the only difference is in 

the work of CL data field. Fig. 7 shows a simple example of tool path optimisation process 

using the Local Mill sequence in CAD/CAM system Creo, at Fig.7a is an original non-

optimised tool path generated by the system Creo; Fig.7b shows the same tool path optimised 

by the Toolpath Optimiser. The graphical flow of the optimisation process at the milling 

operation is depicted in Fig. 8. The genetic algorithm which forms the core of the Toolpath 

Optimiser proved to be a highly effective means of optimisation. The result may be 

considered highly satisfying. With smaller optimisation tasks - about twenty points - the 

optimisation process takes only a few seconds [6]. 

 

 

 

Fig. 8. Graphical flow of the optimisation process at the milling operation 

 

 

4. CONCLUSION 

 

To successfully address an optimisation problem, we must know optimisation methods and 

appropriately select the method we want to deploy to solve the problem in question. Although 

some methods resemble one another due to their work processes, they may not be equally 

suitable for solving the given task. Improper use of a method can reduce the resulting effect of 

its work; it can even lead to obtaining false results. TSP problem can be applied for some of 

the technological processes such as drilling, boring or local milling operations. Most of 
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the common CAM and CAD/CAM systems do not use any optimisation technique or use 

some kind of linear mathematics based technique for solving this task due to the computing 

time [7]. GA due to their efficiency can solve the mentioned problems in a few minutes 

instead of a long time (hours, days) with remarkable results. This article details optimisation 

of machining processes using out of the CAD/CAM system environment. This optimisation 

module may be used either directly or it can easily be modified in compliance with the users´ 

requirements. For example, it is possible to change the module of input and output data, 

which currently works only with the CL data field of CAD/CAM system Creo. The 

experiments were created to optimise processes of both boring and local milling. The results 

of these experiments show that genetic algorithm is a simple and effective method for solving 

complex optimisation problems. From the practical point of view, the application Toolpath 

Optimiser can be used in the pre-production phase with the aim to increase productivity and 

reduce production costs. 
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