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Andrzej BANACHOWICZ1, Adam WOLSKI2 

 

 

METHODS OF POSITION ESTIMATION IN PARAMETRIC 

NAVIGATION 

 

Summary. The estimation of position coordinates of a navigating ship is one of 

the navigational subprocesses. The methods used in this process are either 

deterministic (the case of a minimum number of navigational parameters 

measurements) or probabilistic (in cases where we have access to information 

redundancy). Naturally, due to the accuracy and reliability of the calculated 

coordinates, probabilistic methods should be primarily used. The article presents 

the use of the method of least squares and Kalman filtering in algorithms in 

integrated navigation for the estimation of position coordinates, taking into account 

ship movement parameters.  

Keywords: navigational data fusion; least squares estimation; Kalman filtering; 

estimation; navigation; algorithm of integrated navigation.  

 

 

1. INTRODUCTION 

 

The calculation of ship coordinates involves measurements and calculations of various 

navigational parameters. The basic navigational parameters include position coordinates and 

movement (velocity vector). In terms of position determination, there are three groups of 

navigation methods: 
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- Dead reckoning, in which, on the basis of the mathematical model of the ship movement and 

velocity vector measurements, we can determine a ship’s position at any time. Such an 

approach is known as dead reckoning navigation, with inertial navigation being one of its 

technical implementations. 

- Comparative methods, which involve the comparison of the physical field recorded in an 

analogue or digital device with its measured values. These methods are used in bathymetric 

or topographic navigation, that is, navigation based on the measurement of physical fields 

of the Earth (magnetic, gravitational and other). Today, these methods are also used for 

comparing radar images with digital charts. 

- Parametric methods, using the measurement of physical quantities, which directly or 

indirectly determine navigational function, i.e., geometric relations between a ship’s position 

and navigational marks’ coordinates. This is the primary method of position fixing. 

 

The algorithms for integrated navigation systems involve a fusion of different methods; in 

particular, the parametric method is combined with the dead reckoning method. This process 

requires the combined processing of measurement data, which allows us to optimize the use of 

navigational information. The multisensor fusion of navigational data is widely discussed in the 

literature, e.g., [7], while GPS data integration with other navigational measurements is 

described in [3]. 

These authors present selected variants of the integration of navigational data obtained from 

different navigation systems. The method of least squares and the classic Kalman filter were 

used as the mathematical model of measurements integration. 

 

 

2. THE LEAST SQUARES METHOD  
 

Let us assume that we have measurements of varying accuracy and that we will use the 

method of least squares with weights for their fusion [9]. In this case, the vector of state 

(position coordinates) is described by this formula: 

 𝐱 = (𝐆T𝐑−1𝐆)−1𝐆T𝐑−1𝐳 (1) 

and its covariance matrix is written as this relation: 

 𝐏 = (𝐆T𝐑−1𝐆)−1 (2) 

where: 

𝐱 - vector of state 

𝐳 -  vector of measurements 

𝐆  - a matrix binding the vector of state with the vector of measurements 

𝐏  - covariance matrix of the state vector 

𝐑  - covariance matrix of the measurements vector 

 

One of the simple measurement situations is a combination of GPS position coordinates with 

a dead reckoning (DR) position. In this case, 𝐆, the matrix will be a block matrix in the 

following form: 

 𝐆 = [𝐈𝟐×𝟐 ⋮ 𝐈𝟐×𝟐]
T (3) 

The matrix of measurements covariance will mean that 𝐑 is also a block matrix: 

 𝐑 =  [
𝐏𝐺𝑃𝑆 𝟎
𝟎 𝐏𝐷𝑅

] (4) 
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where the matrices 𝐏𝐺𝑃𝑆 and 𝐏𝐷𝑅 are, respectively, matrices of GPS and DR covariances. With 

these assumptions, the matrix inverse to the covariance matrix of measurements will take this 

form: 

 𝐑−1 = [
𝐏𝐺𝑃𝑆
−1 𝟎

𝟎 𝐏𝐷𝑅
−1] (5) 

 

Here, we have used the matrix inversion by division into blocks [8]: 

 𝐀 = [
𝐏 𝐐
𝐑 𝐒

]to𝐀−1 = [
𝐊 𝐋
𝐌 𝐍

] 

where: 

 𝐍 = (𝐒 − 𝐑𝐏−1𝐐)−1,          𝐋 = −𝐏−1𝐐𝐍 

 𝐌 = −𝐍𝐑𝐏−1,         𝐊 = 𝐏−1(𝐈 − 𝐐𝐌) 
 

Ultimately, with the above assumptions, we get the vector of state (position coordinates): 

 𝐱 = (𝐏𝐺𝑃𝑆
−1 + 𝐏𝐷𝑅

−1)−1[𝐏𝐺𝑃𝑆
−1 ⋮ 𝐏𝐷𝑅

−1]𝐳 (6) 

and its covariance matrix: 

 𝐏 = (𝐏𝐺𝑃𝑆
−1 + 𝐏𝐷𝑅

−1)−1 (7) 

 

 

3. KALMAN FILTER 

 

Kalman filtering is commonly used today [5], [6]. It is implemented at various levels of 

navigational information processing, from physical measurements by sensors (preliminary 

processing), through the combination of measurements from different sensors (intermediate 

processing) to the estimation of position coordinates and other navigational parameters (final 

processing). At each of these levels, we use the same mathematical tools and the same 

computing algorithm. 

The discrete Kalman filter, in a particular case, describes the system of two equations [1], 

[2], [5], [6]: 

- State equation (structural model) 

 𝐱𝒊+𝟏 = 𝐀𝒊+𝟏,𝒊𝐱𝒊 +𝐰𝒊 (8) 

- Measurement equation (measurement model) 

 𝐳𝒊+𝟏 = 𝐂𝒊+𝟏𝐱𝒊 + 𝐯𝒊 (9) 

where: 

𝐱  - n-dimensional vector of state 

𝐰  - r-dimensional vector of state disturbances 

𝐳  - m-dimensional vector of measurements 

𝐯  - p-dimensional vector of measurement disturbances (identified with measurement 

noise) 

𝐀  - n’n-dimensional transition matri 

𝐂  - m’n-dimensional measurement matrix 

r  n, p  m. 

We assume that the vectors of disturbances w and v are Gaussian noise, with normal 

distribution and a zero mean vector, and are mutually non-correlated. In the case of colour noise 

(with a trend), the extended Kalman filter is applied, where the disturbance trend is included as 

additional components of the state vector. 

The equation of state describes the evolution of the dynamic system described in the state 

space, while the model of measurements functionally combines measurements with the system 
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state. The solution to Equations (8) and (9), taking into account the constraints imposed on the 

vectors of disturbances, is the Kalman filter. Calculation of the state vector in the Kalman filter 

is described by the following algorithm: 

- Projection of the state vector: 

 𝐱̃i+1,1 = 𝐀i+1,i𝐱̂i (10) 

where 𝐱̃ is the projected value of the state vector, and 𝐱̂ is the estimated value of the state vector 

 

- Covariance matrix of the projected state vector: 

 𝐏𝑖+1,𝑖 = 𝐀𝑖+1,𝑖𝐏𝑖𝐀𝑖+1,1
T + 𝐐𝑖 (11) 

where Q is the covariance matrix of disturbances of the state (of vector w) 

 

- Innovation process: 

 𝛆𝑖+1 = 𝐳𝑖+1 − 𝐂𝑖+1𝐱̃𝑖+1,𝑖 (12) 

 

- Covariance matrix of the innovation process: 

 𝐒𝑖+1 = 𝐑𝑖+1 + 𝐂𝑖+1𝐏𝑖𝐂𝑖+1
T  (13) 

where R is the covariance matrix of measurement disturbances (of vector v) 

 

- Filter gain matrix (Kalman matrix): 

 𝐊𝑖+1 = 𝐏𝑖+1,1𝐂𝑖+1
T 𝐒𝑖+1

−1  (14) 

 

- Estimated value of the state vector from filtering after measurement 𝐳𝑖+1: 

 𝐱̂𝑖+1 = 𝐱̃𝑖+1,𝑖 + 𝐊𝑖+1𝛆𝑖+1 (15) 

 

- Covariance matrix of the estimated state vector: 

 𝐏𝑖+1 = (𝐈 − 𝐊𝑖+1𝐂𝑖+1)𝐏𝑖+1,𝑖 (16) 

 

 

4. THE STRUCTURE OF THE INTEGRATING FILTER 

 

The adopted mathematical model of ship movement and the configuration of navigational 

devices affect the structure of the Kalman filter algorithm. Let us assume, as in the position 

estimation algorithm by the method of least squares, that position coordinates are determined 

using GPS (parametric navigation), while measurements in dead reckoning navigation are 

obtained from a gyroscopic compass and Doppler log. 

Let us define the state vector as: 

 𝐱 = [𝜑, 𝜆, 𝑉𝑁, 𝑉𝐸 , 𝐶𝑂𝐺, 𝑆𝑂𝐺]
T (17) 

where: 

𝜑  - latitude 

𝜆  - longitude 

𝑉𝑁, 𝑉𝐸 - projections of the vector of speed over ground on the parallel and the meridian 

𝐶𝑂𝐺 - course over ground 

𝑆𝑂𝐺  - speed over ground 
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The transition matrix A of the structural model will be: 

 𝑨𝑖+1,𝑖 =

[
 
 
 
 
 
1 0 𝑘𝜑 ∙ ∆𝑡𝑖 0 0 0

0 1 0 𝑘l ∙ ∆𝑡𝑖 0 0
0 0 1 + ∆𝑉𝑁 0 0 0
0 0 0 1 + ∆𝑉𝐸 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

 (18) 

where: 

 Δ𝑉𝑁 =
𝑉̅𝑁−𝑉𝑁

𝑉𝑁
,  Δ𝑉𝐸 =

𝑉̅𝐸−𝑉𝐸

𝑉𝐸
 (19) 

 𝑘𝜑 =
√(1−𝑒2sin2𝜑)3

𝑎(1−𝑒2)
, 𝑘𝜆 =

√1−𝑒2sin2𝜑

𝑎 cos𝜑
 (20) 

a  - major semi-axis of the Earth’s ellipsoid 

e   - the first eccentricity of the Earth’s ellipsoid 

𝑉̅𝐸i 𝑉̅𝑁 - vectors of mean velocity, along the parallel and the meridian, respectively 

𝑘𝜑 , 𝑘𝜆  - coefficients of conversion of angular measure to linear measure on the reference 

ellipse, on the meridian and parallel, respectively, dependent on the latitude of 

the ship’s position and reference ellipsoid parameters (in this case, WGS-84) 

 

Another element of the structural model is the covariance matrix of the state disturbance 

vector Q. Its elements define a priori distributions of disturbances of the estimated quantities. 

For the state vector, as defined by Formula (10), the matrix of the state Q disturbances may 

assume this form: 

 𝑸𝑖 =

[
 
 
 
 
 
𝑞11 𝑞12 0 0 0 0
𝑞21 𝑞22 0 0 0 0
0 0 𝑞33 𝑞34 0 0
0 0 𝑞43 𝑞44 0 0
0 0 0 0 𝑞55 0
0 0 0 0 0 𝑞66]

 
 
 
 
 

 (21) 

where: 

𝑞11 = 𝑘𝜑
2 (𝜎𝜑

2 + ∆𝑡𝑖
2𝜎𝑉𝑁

2 ),  

𝑞22 = 𝑘𝜆
2(𝜎𝜆

2 + ∆𝑡𝑖
2𝜎𝑉𝐸

2 ), 

𝑞12 = 𝑞21 = 𝑘𝜑𝑘𝜆Δ𝑡𝑖
2𝜎𝑉𝑁𝑉𝐸 , 

𝑞33 = 𝜎𝑉𝑁
2 , 

𝑞44 = 𝜎𝑉𝐸
2 , 

𝑞34 = 𝑞43 = 𝜎𝑉𝑁𝑉𝐸 , 

𝑞55 = 𝜎Δ𝐶𝑂𝐺
2 , 

𝑞66 = 𝜎Δ𝑆𝑂𝐺
2 , 

𝜎𝜑 - disturbance of the ship’s movement along the latitude (yawing) 

𝜎𝜆 - disturbance of the ship’s movement along the longitude (yawing) 

𝜎𝑉𝑁
2 = [(𝜎𝑆𝑂𝐺 cos 𝐶𝑂𝐺)

2 + (𝑆𝑂𝐺𝜎𝐶𝑂𝐺 sin 𝐶𝑂𝐺)
2]  (22) 

𝜎𝑉𝐸
2 = [(𝜎𝑆𝑂𝐺 sin 𝐶𝑂𝐺)

2 + (𝑆𝑂𝐺𝜎𝐶𝑂𝐺 cos 𝐶𝑂𝐺)
2]  (23) 

𝜎𝑉𝑁𝑉𝐸 =
1

2
(𝜎𝑆𝑂𝐺

2 − 𝑆𝑂𝐺2𝜎𝐶𝑂𝐺
2 ) sin 2𝐶𝑂𝐺   (24) 

𝜎𝐶𝑂𝐺  - COG measurement error 

𝜎𝑆𝑂𝐺  - SOG measurement error 
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The quantities measured (measurement model) are the following parameters: position 

coordinates from a GPS system(𝜑𝐺𝑃𝑆, 𝜆𝐺𝑃𝑆), projections of the vector of speed over ground on 

the parallel and meridian (𝑉𝑁 , 𝑉𝐸), course over ground (COG) and speed over ground (SOG). 

Hence, the vector of measurements will take this form: 

 

 𝐳 = [𝜑𝐺𝑃𝑆, 𝜆𝐺𝑃𝑆, 𝑉𝑁 , 𝑉𝐸 , 𝐶𝑂𝐺, 𝑆𝑂𝐺]
𝐓 (25) 

 

The matrix of measurements is the Jacobi matrix, which has the following form: 

 

 𝐶 = [
𝜕𝐟

𝜕𝐱
] =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 𝐵1 𝐵2 −1 0
0 0 𝐸1 𝐸2 𝐸3 −1]

 
 
 
 
 

 (26) 

  

𝐵1 =

{
 

 
𝐶𝑂𝐺

2𝑉𝑁
 , 𝑉𝑁 ≠ 0,

𝐶𝑂𝐺

2
 , 𝑉𝑁 = 0,

 

  

𝐵2 =

{
 

 
𝐶𝑂𝐺

2𝑉𝐸
 , 𝑉𝐸 ≠ 0,

𝐶𝑂𝐺

2
 , 𝑉𝐸 = 0,

 

 𝐸1 = (1 −
𝑉𝐸
2

𝑉
) cos 𝐶𝑂𝐺 +

𝑉𝑁𝑉𝐸

𝑉
sin 𝐶𝑂𝐺, 

𝐸2 = (1 −
𝑉𝑁
2

𝑉
) sin 𝐶𝑂𝐺 +

𝑉𝑁𝑉𝐸
𝑉

cos 𝐶𝑂𝐺, 

 𝐸3 = 𝑉𝑁 sin 𝐶𝑂𝐺 − 𝑉𝐸 sin 𝐶𝑂𝐺 

𝑉 = √𝑉𝑁
2 + 𝑉𝐸

2 

 

The matrix of measurement disturbance covariance (measurement vector) is also an element 

of the measurement model. It is a band matrix because certain quantities measured are not 

correlated with each other, e.g., GPS measurements and components of speed from dead 

reckoning navigation, or gyroscope and log measurements. 

 

 𝐑 =

[
 
 
 
 
 
 
𝜎𝜑
2 0 0 0 0 0

0 𝜎𝜆
2 0 0 0 0

0 0 𝜎𝑉𝐸
2 𝜎𝑉𝐸𝑉𝑁 0 0

0 0 𝜎𝑉𝐸𝑉𝑁 𝜎𝑉𝑁
2 0 0

0 0 0 0 𝜎𝐶𝑂𝐺
2 0

0 0 0 0 0 𝜎𝑆𝑂𝐺
2 ]
 
 
 
 
 
 

 (27) 
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5. SUMMARY 

 

The presented models and algorithms illustrate two of many possibilities regarding the 

navigational application of the method of least squares and the Kalman filter for the integration 

of navigational data. In the Kalman filter, the state vector reproduces system evolution 

(movement trend) on the basis of dead reckoning navigation. The main advantages of the 

Kalman filter, in this case, are its recurrence, which is a natural necessity in case of ship 

navigation, and the possibility of using the ship movement data (its trend). 

There are other approaches to Kalman filtering, based on Monte Carlo simulations [4] and 

artificial intelligence methods [10], which enable identification of the state model parameters 

and online measurements. 
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