Markus SCHATTEN, Miroslav BAČA, Petra KORUGA

A SEMANTIC TRANSPORT NETWORKS FOR PREFERENTIAL ROUTING

Summary. The paper presents a semantic network formalism based on frame logic. Advanced techniques, including HiLog extensions, transaction logic and dynamic module creation are applied to the problem of preferential routing and rerouting. The deductive program is implemented in the FLORA-2 reasoning engine, which allows the scalable query execution. Finally, possible extensions to the system and guidelines for a future research are presented.

WYKORZYSTANIE SEMANTYCZNYCH SIECI TRANSPORTOWYCH DO WYZNACZANIA UPRZYWILEJOWANYCH TRAS

Streszczenie. Artykuł prezentuje formalizm sieci semantycznej oparty na logice ramek. Zadanie wyznaczania uprzywilejowanych tras stanowi pole wykorzystania zaawansowanych technik opracowania dynamicznych modułów, rozszerzeń HiLog i logiki transakcyjnej. Opracowany dedukcyjny program implementowany jest z użyciem silnika wnioskowania FLORA-2, który pozwala na wykonywanie skalowalnych zapytań. Artykuł kończy się omówieniem rozszerzeń systemu i prezentacja kierunków dalszych badań.

1. INTRODUCTION

The expression transportation networks assign a net of numerous nodes joined together by linkage relationships in between [6]. The routing process in the transportation network usually deals with questions, like [4]:
- what is the most efficient routing between two network’s locations,
- how one can find the most reasonable set of alternative routes, in case the specific segment of the transportation net is locked,
- how to compare the transportation costs of different routing algorithms concerning the modal traffic solutions; including highways, railways and waterways,
- what additional transportation time-margins have to be predicted covering increasing traffic congestion, along the considered routes,
- what kind of effects can be observed produced by permanent changes of transportation costs, demands an policy.

The transportation route selection problem is at the moment under analysis, in various forms concerning the transport logistic items analysis Bošnjak and Badanjak [1, p. 38]. The given example book introduces basis of traffic engineering, with several model routing processes, transport modeling and time criterions selection; illustrated in figure 1.
In general, to generate alternative routes for fulfilling the transportation task, many nodes and links, indicating the expected location of all the transportation means (with their departure and destination), have to be under careful analysis. The most common variables, taken under consideration, concern location of the departure, destination point, time of the departure and an arrival time [6].

2. FRAME LOGIC

In this unit the syntax and semantics of frame logic definitions are presented.

Definition 1 (the frame logic alphabet)
The alphabet of F - logic language \(\mathcal{L} \) consists of the following components [5]:
- a set of an object constructors \(\mathcal{F} \),
- an infinite set of variables \(\mathcal{V} \),
- auxiliary symbols, such as: (,), [,], →, ∧, ∨, ⇒, ⇒, etc.; and
- usual logical connectives and quantifiers, ∨, ∧, ¬, ←→, ∀, ∃.

The object constructors (the elements of \(\mathcal{F} \)) play the role of function symbols in F-logic whereby each function symbol has an arity. The arity is a non-negative integer that represents the number of arguments that the symbol can take. A constant is a symbol with arity 0, and symbols with arity \(\geq 1 \) are used to construct larger terms, out of simpler ones.

An id-term is a usual first-order term composed of function symbols and variables, as in predicate calculus. The set of all variable free or ground id-terms is denoted by \(U(\mathcal{F}) \) and is commonly known as Herbrand Universe. Id-terms play the role of a logical object’s identities in F-logic, which is a logical abstraction of physical object identities.

A language in F-logic consists of a set of formulas assigning the alphabet’s symbols. The most simple formulas, used in F-logic are called F-molecules.

Definition 2 (the F-molecule)
The molecule in the F-logic is one of the following statements:
- an is-a assertion of the form \(C :: D \) (\(C \) is a non-strict subclass of \(D \)) or of the form \(O : C \) (\(O \) is a member of class \(C \)), where \(C, D \) and \(O \) are id-terms;
- an object molecule of the form \(O [\text{ a ';' separated list of method expressions }] \) where \(O \)
is a id-term that denotes and object.

A method expression can be either a non-inheritable data expression, an inheritable data expression, or a signature expression:

- non-inheritable data expressions can be defined by the following two forms:
 - a scalar expression $\text{ScalarMethod}@Q_1, \ldots, Q_k \rightarrow T_k (k \geq 0)$.
 - a set-valued expression $\text{SetMethod}@R_1, \ldots, R_m \rightarrow \{S_1, \ldots, S_m\} (0, m \geq 0)$.
- inheritable scalar and set-valued expression are equivalent to their non-inheritable counterparts except that \rightarrow is replaced with $\bullet \rightarrow$, and \rightarrow with $\bullet \Rightarrow$.
- signature expression can also take two different forms:
 - a scalar signature expression $\text{ScalarMethod}@V_1, \ldots, V_n \rightarrow (A_1, \ldots, A_r) (n, r \geq 0)$.
 - a set valued signature expression $\text{SetMethod}@W_1, \ldots, W_s \rightarrow (B_1, \ldots, B_t) (s, t \geq 0)$.

All methods’ left hand sides (e. g. Q_k, R_i, V_i and W_i) denote arguments, whilst the right hand sides (e. g. T, S_i, A_i and B_i) denote method outputs. Single-headed arrows (\rightarrow, $\bullet \rightarrow$ and \Rightarrow) denote scalar methods and double-headed arrows (\rightarrow, $\bullet \rightarrow$ and \Rightarrow) denote set-valued methods.

Having the prerequisites defined we are now able to define F-formulae.

Definition 3 (F-formulae)

F-formulae are defined recursively:

- F-molecules are F-formulae;
- $\varphi \lor \psi$, $\varphi \land \psi$, and $\neg \varphi$, are F-formulae if so are φ and ψ;
- $\forall X \varphi$ and $\exists Y \psi$ are F-formulae, so are φ and ψ, and X and Y are variables.

For our purpose these definitions of F-logic are sufficient but the interested reader is advised to consult [5] for profound logical foundations of object-oriented and frame based languages.

3. THE SEMANTICS OF TRANSPORT NETWORKS

To define the semantics of transport networks we will first use graph theory [3, 9] and afterwards formalise an approach by using frame logic.

Definition 4 A graph G is the pair (N, E) whereby N represents the set of vertices or nodes, and $E \subseteq N \times N$ the set of edges connecting pairs from N.

The notion of directed- and valued directed graphs is of special importance to our study.

Definition 5 A directed graph or digraph G is the pair (N, E), whereby N represents the set of nodes, and $E \subseteq N \times N$ the set of ordered pairs of elements from N that represent the set of graph arcs.

Definition 6 A valued or weighted digraph G is the triple (N, E, V) whereby N represents the set of nodes or vertices, $E \subseteq N \times N$ the set of ordered pairs of elements from N that represent the set of graph arcs, and $V : E \rightarrow \mathbb{R}$ a function that attaches values or weights to arcs.

A transport network can now be defined as a valued digraph in which nodes represent crossings between routes, arcs represent routes between nodes and weight represent the distance between nodes covered by arcs. The network has to be directed since there are one-way routes. Now, consider the following definition of a semantic transport network.
Definition 7 Let $\mathcal{G} = (\mathcal{N}, \mathcal{E}, \mathcal{V})$ be a valued digraph. Let further $\mathcal{A} = \{a_1, a_2, \ldots, a_n, \ldots\}$ be an extensible set of attributes, and $\mathcal{V} = \{v_1, v_2, \ldots, v_n, \ldots\}$ an extensible set of values, and let also $\nu: \mathcal{A} \times \mathcal{V} \rightarrow \mathcal{N}$ and $\varepsilon: \mathcal{A} \times \mathcal{V} \rightarrow \mathcal{E}$ be two mappings, which map attribute-value pairs to nodes and arcs respectively. We define the tuple $\mathcal{STN} = (\mathcal{N}, \mathcal{E}, \mathcal{V}, \mathcal{A}, \mathcal{V}, \nu, \varepsilon)$ to be a semantic transport network.

The definition adds semantics form of attribute-value tuples, to the transport network description.

Consider the following example:

\[\mathcal{N} = \{a, b, c, d, e, f, g\}\]
\[\mathcal{E} = \{p_1(a, b), p_2(a, c), p_3(a, d), p_4(b, e), p_5(c, e), p_6(d, f), p_7(e, g), p_8(f, h), p_9(f, g)\}\]
\[\mathcal{A} = \{\text{type, landscape}\}\]
\[\mathcal{V} = \{\text{highway, country road, farmland, forest}\}\]

\[
\begin{array}{c|cccccccc}
\mathcal{A} & p_1 & p_2 & p_3 & p_4 & p_5 & p_6 & p_7 & p_8 \\
\mathcal{V}(\mathcal{A}) & 1 & 2 & 1 & 5 & 2 & 1 & 3 & 5 & 2
\end{array}
\]

\[\nu = \begin{array}{c|c}
\mathcal{A} \times \mathcal{V} & \mathcal{N} \\
\hline
\emptyset & \mathcal{N} \\
\end{array}
\]

\[
\begin{array}{l}
\text{type} \rightarrow \text{highway} & p_1 \\
\text{landscape} \rightarrow \text{farmland} & p_1 \\
\text{type} \rightarrow \text{country road} & p_2 \\
\text{landscape} \rightarrow \text{forest} & p_2 \\
\text{type} \rightarrow \text{highway} & p_3 \\
\text{landscape} \rightarrow \text{farmland} & p_3 \\
\text{type} \rightarrow \text{highway} & p_4 \\
\text{landscape} \rightarrow \text{farmland} & p_4 \\
\text{type} \rightarrow \text{country road} & p_5 \\
\text{landscape} \rightarrow \text{forest} & p_5 \\
\text{type} \rightarrow \text{highway} & p_6 \\
\text{landscape} \rightarrow \text{farmland} & p_6 \\
\text{type} \rightarrow \text{highway} & p_7 \\
\text{landscape} \rightarrow \text{farmland} & p_7 \\
\text{type} \rightarrow \text{highway} & p_8 \\
\text{landscape} \rightarrow \text{farmland} & p_8 \\
\text{type} \rightarrow \text{highway} & p_9 \\
\end{array}
\]

\[\varepsilon = \begin{array}{l}
\text{type} \rightarrow \text{country road} & p_5 \\
\text{landscape} \rightarrow \text{forest} & p_5 \\
\text{type} \rightarrow \text{highway} & p_6 \\
\text{landscape} \rightarrow \text{farmland} & p_6 \\
\text{type} \rightarrow \text{highway} & p_7 \\
\text{landscape} \rightarrow \text{farmland} & p_7 \\
\text{type} \rightarrow \text{highway} & p_8 \\
\text{landscape} \rightarrow \text{farmland} & p_8 \\
\end{array}
\]

It holds that $\forall (a_i \rightarrow v_i) \in P_\mathcal{N} \Rightarrow [(a_i \rightarrow v_i) \rightarrow n_i] \in \nu$, and conforming to a set $P_\mathcal{E} \subseteq \mathcal{A} \times \mathcal{V}$ such that $\forall v_i \in v, \text{it holds that } \forall (a_i \rightarrow v_i) \in P_\mathcal{E} \Rightarrow [(a_i \rightarrow v_i) \rightarrow n_i] \in \varepsilon$.
4. IMPLEMENTATION

The implementation in Flora-2 [11] follows an object-oriented approach. Two classes are defined: nodes and routes, whereby nodes are intersections between routes. In the following listing we define \{a, b, c, d, e, f, g, h\} to be instances of class node. These instances would usually have additional attributes like latitude and longitude.

\[
a : \text{node. } b : \text{node. } c : \text{node. } d : \text{node. } e : \text{node. } f : \text{node. } g : \text{node.}
\]

The following listing shows how routes (edges) are implemented. As one can see, three additional attributes where used to model source (attribute from), destination (attribute to) and route length (attribute length).

\[
\begin{align*}
p1: \text{route} & \\
& \text{from} -> a, \\
& \text{to} -> b, \\
& \text{length} -> 1, \\
& \text{type} -> \text{highway}, \\
& \text{landscape} -> \text{farmland }.
\end{align*}
\]

\[
\begin{align*}
p2: \text{route} & \\
& \text{from} -> a, \\
& \text{to} -> c, \\
& \text{length} -> 2, \\
& \text{type} -> \text{country_road}, \\
& \text{landscape} -> \text{forest }.
\end{align*}
\]

Having the basic classes defined, we are now able to define the specific methods. Prior to that we need to define Flora-2 modules, transaction logic and HiLog extensions, which are specific for this logical platform. The Flora-2 modules are logical abstractions that allow us to split large programs into smaller instances and to facilitate reuse [10, p. 25]. A module consists formally of a name and a content. In a way, modules in Flora-2 are similar to namespaces, that allow us to query only one part of a (potentially large) knowledge base. To call any literal (F-molecule or predicate) that is defined in some other module that the actual the following syntax is used: literal@module
Flora-2 also supports dynamic updates of the knowledge base [10, pp. 74 - 89]. The following syntax allows us to insert facts into the knowledge base at runtime: \texttt{insop[literals][query]}. Whereby insop can be any of insert, insertall, delete, deleteall, erase or eraseall. For our purpose we will use the insertall statement which inserts all literals that satisfy a given formula. Additionally, to create and erase modules on runtime the we will use the \texttt{newmodule{modulename}} and \texttt{erasuremodule{modulename}} statements, respectively.

Flora-2 uses HiLog [2] as its default predicate representation. This in essence means that complex terms can appear wherever a function symbol is allowed [10, p. 42]. In order to reduce the search space and filter out only relevant routes, we will take the following strategy:

1. A new module is created on runtime
2. Facts (nodes and routes) that pass through the user supplied filters are inserted into the new module
3. A query is issued towards the new module to find the shortest path
4. The results are delivered and the module is erased

Since all queries will be issued against a newly created module, we need to find that module at runtime. This is why the module name will be a logic variable in all the following predicates. First we implement the path_to/2 method which allows us to query for paths to other nodes from a given one. The implementation is recursive, as usual:

\begin{verbatim}
 ?_:route[from->?x, to->?y]@?mod.
 ?[from->?x, to->?z]@?mod,
\end{verbatim}

With such a method defined we can now issue the query “show all paths from node d to node g” (main being the current module):

\begin{verbatim}
flora2 ?- d[path_to(g, main)->?p].
?p = [d, f, h, g]
\end{verbatim}

In order to find the length of a path to a given node we implement the following method (path_length_to):

\begin{verbatim}
 ?x[path_to(?y, ?mod) -> [?x, ?y]],
 ?x[path_to(?y, ?mod) -> [?x, ?z | ?t]],
 ?_:route[from->?x, to->?z, length->?l1]@?mod,
 ?z[path_to(?y, ?mod) -> [?z | ?t]],
 ?z[path_length_to(?y, ?mod) -> ?l2],
\end{verbatim}

Now we can put the question: ”What are the lengths of all paths from point d to g? ” The following query yields the answer.

\begin{verbatim}
flora2 ?- d[path_length_to(g, main)->?l].
?l = 8
\end{verbatim}
In order to be able comparing the lengths of different paths, we implement the following auxiliary predicate (path_length).

\[
\text{path_length}(\ [\ ?x, \ ?y \], \ ?l, \ ?\text{mod}) :- \\
____\text{route}[\ \text{from}\rightarrow\ ?x, \ \text{to}\rightarrow\ ?y, \ \text{length}\rightarrow\ ?l] @\?\text{mod}. \\
\text{path_length}(\ [\ ?x, \ ?y | \ ?t \], \ ?l, \ ?\text{mod}) :- \\
____\text{route}[\ \text{from}\rightarrow\ ?x, \ \text{to}\rightarrow\ ?y, \ \text{length}\rightarrow\ ?l1] @\?\text{mod}, \\
\text{path_length}(\ [\ ?y | \ ?t \], \ ?l2, \ ?\text{mod}), \\
?l \ \text{is} \ ?l1 + \ ?l2. \\
\]

The following query shows the behavior of this predicate:

\[
\text{flora2} \ ?- \ \text{path_length}(\ [d, \ f, \ h, \ g], \ ?l, \ \text{main}). \\
?l = 8
\]

Now we are able to implement the minimal_path_to method which will allow us to find the minimal path between two nodes.

\[
\text{x:node}[\ \text{minimal_path_to}(\ ?y, \ ?\text{mod}) \rightarrow \ ?p] :- \\
?m = \text{min}\{ \ ?l | \ ?x[\ \text{path_length_to}(\ ?y, \ ?\text{mod})\rightarrow\ ?l] \}, \\
?x[\ \text{path_to}(\ ?y, \ ?\text{mod}) \rightarrow \ ?p], \\
\text{path_length}(\ ?p, \ ?m, \ ?\text{mod}).
\]

As one can see the method makes use of the min aggregate function which finds the minimal path length. We can now ask the question “what is the minimal path from a to g?” using the following query:

\[
\text{flora2} \ ?- \ a[\ \text{minimal_path_to}(\ g, \ \text{main}) \rightarrow \ ?p]. \\
?p = [a, \ c, \ e, \ g]
\]

Now we need to implement a mechanism to filter out only those nodes/routes which conform to a set of user supplied preferences. A generic way to do this is to use HiLog as is done in the following predicate (filter).

\[
\text{filter}(\ [], \ ?_ \). \\
\text{filter}(\ [\ ?x\rightarrow\ ?y | \ ?t \], \ ?p) :- \\
?p[\ ?x \rightarrow \ ?y], \\
\text{filter}(\ ?t, \ ?p).
\]

The first parameter is a list of attributes with corresponding values, and the second is an object from the knowledge base. The predicate succeeds iff the object has all attribute-value pairs which were supplied. Consider the following problem: “find all routes which are highway paths and go through farmland”. The following query solves the problem:

\[
\text{flora2} \ ?- \ \text{filter}([\text{type}\rightarrow\text{highway}, \text{landscape}\rightarrow\text{farmland}], \ ?p). \\
\text{flora2} \ ?- \ \text{filter}([\text{type}\rightarrow\text{country_road}, \text{landscape}\rightarrow\text{forrest}], \ ?p). \\
?p = p2 \\
?p = p5
\]

The same query would apply to nodes if nodes were also annotated with additional semantics. In this way we could have filtered out only those nodes which are in some
geographical area for example. Now we can implement the preference_path predicate which will find a minimal path that conforms to user specified filters. First only those routes that conform to all filters are inserted into a new module, and then a minimal path query is issued.

\[
\text{preference_path}(\ ?\text{from}, \ ?\text{to}, \ ?\text{filters}, \ ?p) :-
\text{insertall}
\]
\[
?\text{p}:\text{route}[\ ?x \to ?y \]@\text{pref} |
?\text{p}:\text{route}[\ ?x \to ?y],
\text{filter}(\ ?\text{filters}, \ ?\text{p}) ,
\text{?from}[\ \text{minimal_path_to}(\ ?\text{to}, \ \text{pref}) \rightarrow \ ?\text{p}].
\]

We can now ask the question: “What are the shortest paths from a to g that are highway paths and go through farmland?” In order to issue such a query we first need to create a new module.

\[
\text{flora2} \ ?- \ \text{newmodule}\{ \ \text{pref} \},
\text{preference_path}(\ a, \ g, \ \{ \text{type} \to \text{highway}, \text{landscape} \to \text{farmland} \} , \ ?p) ,
\text{erasure}\text{module}\{ \ \text{pref} \}.
\]
\[
?p = \{ a, b, e, g \}
?p = \{ a, d, f, h, g \}
\]

5. CONCLUSION

The paper presented the semantic assignment of transport networks and their application to the preferential routing problem. The frame logic formalism was used to describe the semantic transport networks and the lora-2 reasoning engine was used for the implementations. The advanced techniques like HiLog, transaction logic and dynamic modules can be used to avoid the well known obstacles.

One of the obstacles is the combinatorial explosion that can drive calculations into an inefficient queries, in algorithms of solving the routing problems, with all logic programming tricks, due to a multiple recursive procedure involved into.

By filtering out facts to a dynamic module, the fact base is dramatically reduced, and queries are faster and more efficient. On line, analysis methods of the coefficient surface will be the goal of future research.

Due to a reasonable Python [7] and the Python Google API, the implemented system can be easily connected to the Google Maps; and due to F-OWL [12] it can be connected to any OWL based ontology [8]. We leave the implementation of geographical and other filters to future research.

Bibliography