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IMPLEMENTATION OF DISCRETE FULLY STRESSING INTO 

STRUCTURAL OPTIMIZATION 

Summary. The paper presents numerical study of the discrete formulation of the fully 

stress design (FSD) algorithm in the case of the thin shell finite elements. The goal will be to 

present interesting original mathematical description of the direct strength designing. Using 

numerical tests the effectiveness of the proposed algorithms will be compared. 
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IMPLEMENTACJA DYSKRETNEGO WARTOŚCIOWANIA DLA STANU 

PEŁNEGO NAPRĘŻENIA W CELU OPTYMALIZACJI KONSTRUKCJI 

Streszczenie. Artykuł jest poświęcony numerycznemu studium dyskretnej formuły 

algorytmu projektowania dla stanu pełnego naprężenia (FSD algoritmus) w przypadku 

cienkich skorupowych elementów skończonych. Celem będzie zaprezentowanie 

interesującego oryginalnego matematycznego opisu bezpośredniego projektowania 

wytrzymałościowego. Efektywność zaproponowanych algorytmów zostanie porównana za 

pomocą testów numerycznych. 

Słowa kluczowe. Analiza naprężenia, cienki skorupowy element skończony, 

projektowanie dla stanu pełnego naprężenia. 

1. INTRODUCTION  

Expansion of computational technique allowed putting qualitatively new approaches in 

designing machines and appliances into practice. The problem of proper designing and 

constructing of machines gets new dimensions and wide scope for solving other unsolved 

problems by establishing computers and consequent creating and developing corresponding 

software. An optimized design is comprehended as a technically realizable design of structure 

which is the best from all possible designs for a given goal [3]. 

Optimization of mechanical systems combines numerical mathematics and engineering 

mechanics. It is used in applications in civil engineering, mechanical engineering, automotive 

and ship-building industry, and so on. It made the biggest progress in last thirty years thanks 

to utilizing very fast numerical computers and computer graphics. When choosing cost, 
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weight of structure or maximum power at limited cost as a design criterion, the importance of 

optimization is evident. 

First formulations of optimization problems in form of mathematical programming were 

occurring approximately since 1960. One of the pioneers, who significantly influenced the 

development of optimal designing of constructions of machines and their components, was 

undoubtedly Schmit. He linked optimization methods with a new and progressive 

computational method at that time - finite element method as one of the first. At that time, the 

weight of monitored object or some strength condition was the objective function. 

Optimization process was gradually improving by adding other limiting conditions. In the 

second half of last century other works of similar nature, which extended options in the field 

of optimal designing of parameters of machines and their components into automated 

approaches occurred. We cannot omit works of Kirch, Morrow, or Gallagher. There were 

designed plenty of effective approaches based not only on purely mathematical 

comprehension of optimization problem, but also a little bit non-traditional or more precisely 

unaccustomed approaches which play an important role in solving various technical problems. 

These approaches use some of the basic principles of mechanics. For example, the method 

which is known as fully stress design (FSD) originated from the idea of independence of axial 

forces in statically determinate truss structures. Its application is useful, mainly thanks to its 

effectiveness. However, it is limited only to problems of strength dimensioning and it turned 

out to be certain disadvantage in creating universal program systems. In this article theory of 

FSD will be described and applied specially for truss, beam and shell structures in spite of its 

lower universality [3, 6]. 

2. FULLY STRESS DESIGN ALGORITHMIZATION IN THE CASE OF THIN 

SHELL FINITE ELEMENT 

We will focus on well-known shell finite elements (Kirchhoff’s or Mindlin’s formulation) 

[8, 10, 11, 12], mainly on the stress computation. The stiffness parameters depend on material 

constants and element geometry, mainly on its thickness. The stress computation process is 

based on the expression of the j-th element membrane forces and bending moments (without 

shear forces) [10, 9], i.e. 

 (1) 

and 

 (2) 

The auxiliary matrices Im and Ibcan be calculated only using the numerical approach. 

Further details about Em,Eb, D, Bm, Bb, uel and t are presented in [9]. The extreme stress values 

can be expected at the top or at the bottom surface. We will deal with 3 basic types of 

algorithms based on the FSD. 

 

2.1. Algorithm no. 1 - classic FSD 

 

Classic FSD algorithm assumes linear relation between stress in shell and inverse value 

of shell thickness. This assumption arises from the assumption of constant force quantities 

whose values does not depend on shell thickness. The algorithm arises from the similarity of 

the triangles 0AB and 0CD as can be seen in Fig. 1. This similarity can be expressed by 

relation 3. 
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By means of this equation it is possible to derive the relation for the calculation of new 

value of optimizing variable (new thickness) 

 

 (4) 

The geometric interpretation shows, that new estimation   
     is preformed from the 

points [0,0] and [ 
 

  
 

   

,    
   

].From the numerical mathematics point of view we are speaking 

about RegulaFalsi method (method of chords-secants). For each optimizing group maximum 

stress and thickness value from the previous iteration step are introduced into equation (4) and 

value   
      is calculated. This value is compared with values from the vector of possible 

values of the design variables. The nearest higher value is chose as a new value of the 

optimizing variable. 

 
Fig. 1. Geometric interpretation of the algorithm no.1 

Rys. 1. Geometryczna interpretacja algorytmu nr 1 

 

2.2. Algorithm no. 2 - approximated FSD 

 

It arises from Newton’s tangent method (also known as the Newton-Raphson method). Its 

problem is to compute the derivative of stress with respect to the design variable.This 

computation will be realised numerically. Then the effective formulation for the FSD can be 

derived from the geometry shown in Fig. 2 from the similarity of the traingles ABC and BDE, 

i.e.  

 

 (5) 

 

The inverse value of new design variable will be 
 

 (6) 
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Fig. 2. Geometric interpretation of the algorithm no.2 

Rys. 2. Geometryczna interpretacja algorytmu nr 2 

 

Procedure of the computation for the 1st iteration step 

For the calculation of new value of the optimizing variable it is necessary to know the 

stress values from two previous iteration steps. Therefore it is necessary to perform the 

computation of new optimizing variable in the 1st iteration step by another algorithm. For that 

reason the 1st iteration step in testing problems where the algorithm no. 2 was utilized was 

always solved by means of the algorithm no.3. 

 

Procedure of choosing new value of the optimizing variable 

After introducing the known values into the equation 

  

 (7) 

 

 

 

The value     
      is calculated and consequently it is compared with values from the 

vector of possible values of the design variables. The nearest higher value is chose as a new 

value of the optimizing variable. 

 

 

2.3. Algorithm no. 3 - FSD with linear approximation of force quantities 

 

Numerical testing showed that the assumption of constant force quantities in the classic 

interpretation of the FSD (the algorithm no. 1) does not respond to real state. Advantage of 

the algorithm no. 3 in comparison with the classic version of the FSD is the fact, that it 

assumes linear approximation of the internal force quantities. Geometric interpretation of this 

approximation is illustrated in Fig. 6. This approximation significantly improves the 

convergence of the solution.  
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Fig. 3. Principle of linear approximation of force quantities 

Rys. 3. Zasada aproksymacji liniowej wielkości sił 

 

Procedure of predicted stress calculation in (k+1)-th step  

For each of the possible design variable it is necessary to make an estimation of the force 

quantities expressed by equations (1) and (2). Approximated values of forces and moments 

for the n-th design variable from the i-th optimizing group in the (k+1)-th iteration step will 

be 

  

 (8) 

  

 (9) 

 

Consequently the stress components will be calculated with using approximated values of 

the force quantities, i.e. 

- membrane stress components 

 

 (10) 

 

- bending stress components 

 

 (11) 

 

Then the von Misesstresses on top and bottom surface of the shell are calculated as 

follows 

- equivalentstress on top surface 

 

 (12) 

 

 

- equivalentstress on bottom surface 

 

 (13) 
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Consequently the stresses in top and bottom surface are compared and one of them is set 

as maximum          

     
. 

3. COMPARISON STUDY OF THE PROPOSED ALGORITHMS 

Presented computational algorithms were tested and compared on the structure shown in  

Fig. 4. Four-node thin shell isoparametric finite elements were used. The pipe with diameter 

of 80 mm, length of 1000 mm and wall thickness of 10 mm was modelled by means of beam 

elements. The pipe was connected with the shell by truss elements which transfer only 

compression forces (nonlinear model with very low tension stiffness).  Linear elastic isotropic 

material model with Young's modulus E=2,1.10
5
MPa and Poisson's ratio ϑ=0.3 was used. 

Boundary conditions were defined as follows  

- forces =>uniformly distributed force F=10 N.mm
-1

 on the length of the pipe in direction of 

Y= -1,  Z= -1 (Fig. 4, magenta part), 

- displacements => zero displacement on the edge in Y-axis direction, zero displacements in 

all direction on the annular areas under the screws, zero displacement in X-axis direction and 

zero rotations about Y and Z-axis (symmetry) on the free end of the pipe (Fig. 4, green part). 

Three optimizing variables were selected for the process of optimization (see Fig. 5-red, 

green and blue parts). Maximum design stress was considered as σL=120 MPa. Vector 

tstart=[40,40,40] mm was suggestedas the start point and discrete design variables were chosen 

from the interval of<8, 40> mm with increment of1 mm.Maximum number of iterations was 

set to 20. Optimizing process was terminated when the following convergence conditions 

were fulfilled 

- stress convergence condition   
     

  
                             , 

- design variable convergence condition  
  
   

   
     

 
 
                         . 

 
  

  
Fig. 4. Boundary conditions for the testing structure 

Rys 4. Skrajne warunki dla testowanej konstrukcji 

Fig. 5. Optimizing groups (1 – red, 2 – green, 

3 – blue) 

Rys. 5. Grupy optymalizacyjne (1. – 

czerwona, 2. – zielona, 3. – niebieska) 
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Fig. 6. History of convergence for the 

algorithm no.1: max. equivalent stress 

vs. iteration number 

Rys. 6. Przebieg konwergencji dla algorytmu  

nr 1: zależność maksymalnego 

naprężenia od liczby kroków iteracji 

Fig. 7. History of convergence for the 

algorithm no.1: thickness vs. iteration 

number 

Rys. 7. Przebieg konwergencji dla algorytmu  

nr 1: zależność grubości od liczby 

kroków iteracji 

 

  
Fig. 8. History of convergence for the 

algorithm no.2: max. equivalent stress 

vs. iteration number 

Rys. 8. Przebieg konwergencji dla algorytmu  

nr 2: zależność maksymalnego 

naprężenia od liczby kroków iteracji 

Fig. 9. History of convergence for the 

algorithm no.2: thickness vs. iteration 

number 

Rys. 9. Przebieg konwergencji dla algorytmu  

nr 2: zależność grubości od liczby 

kroków iteracji 

 

  
Fig. 10. History of convergence for the 

algorithm no.3: max. equivalent stress 

vs. iteration number 

Rys. 10. Przebieg konwergencji dla algorytmu 

nr 3: zależność maksymalnego 

naprężenia od liczby kroków iteracji 

Fig. 11. History of convergence for the 

algorithm no.3: thickness vs. iteration 

number 

Rys.11.  Przebieg konwergencji dla algorytmu 

nr 3: zależność maksymalnego 

naprężenia od liczby kroków iteracji 
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4. CONCLUSION 

Our paper deals with theoretical principles and numerical realization of the three 

fullystressing optimizing algorithms focusing on shell finite elements. The original 

computational procedures were inbuilt into MATLAB’s software module MAT_FSD which 

cooperates with FE software ADINA. The presented results of the study and authors 

experience mention the fact that using of classical fully stress design method for shell 

structures modelled by finite element method can be inconvenient. The authors proposed two 

new algorithms which have solved this fact. These methods converge well, they are effective 

in the number of iteration steps and they have big perspective for large optimizing problems 

where the goal is to find hundreds of structural parameters by application of relatively low 

number of iteration steps. 
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